High-resolution tracking of cell division suggests similar cell cycle kinetics of hematopoietic stem cells stimulated in vitro and in vivo

Author:

Oostendorp Robert A. J.1,Audet Julie1,Eaves Connie J.1

Affiliation:

1. From the Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; the Department of Medical Genetics and the Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada; and the Department of Cell Biology and Genetics, Erasmus University, Rotterdam, the Netherlands.

Abstract

The kinetics of proliferation of primitive murine bone marrow (BM) cells stimulated either in vitro with growth factors (fetal liver tyrosine kinase ligand 3 [FL], Steel factor [SF], and interleukin-11 [IL-11], or hyper–IL-6) or in vivo by factors active in myeloablated recipients were examined. Cells were first labeled with 5- and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) and then incubated overnight prior to isolating CFSE+ cells. After 2 more days in culture, more than 90% of the in vivo lymphomyeloid repopulating activity was associated with the most fluorescent CFSE+ cells (ie, cells that had not yet divided), although this accounted for only 25% of the repopulating stem cells measured in the CFSE+ “start” population. After a total of 4 days in culture (1 day later), 15-fold more stem cells were detected (ie, 4-fold more than the day 1 input number), and these had become (and thereafter remained) exclusively associated with cells that had divided at least once in vitro. Flow cytometric analysis of CFSE+ cells recovered from the BM of transplanted mice indicated that these cells proliferated slightly faster (up to 5 divisions completed within 2 days and up to 8 divisions completed within 3 days in vivo versus 5 and 7 divisions, respectively, in vitro). FL, SF, and ligands which activate gp130 are thus efficient stimulators of transplantable stem cell self-renewal divisions in vitro. The accompanying failure of these cells to accumulate rapidly indicates important changes in their engraftment potential independent of accompanying changes in their differentiation status.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3