Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion

Author:

Wang Qin1,Chiang Eddie T.1,Lim Mark1,Lai Jean1,Rogers Rick1,Janmey Paul A.1,Shepro David1,Doerschuk Claire M.1

Affiliation:

1. From the Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston; the Microvascular Research Laboratory, Boston University, Boston; and the Hematology Division, Brigham and Women's Hospital, Boston, MA.

Abstract

AbstractThis study examined changes in the biomechanical properties of cultured pulmonary microvascular endothelial cells (ECs) and neutrophils induced by adhesion of neutrophils to these ECs. The biomechanical properties of cells were evaluated using magnetic twisting cytometry, which measures the angular rotation of ferromagnetic beads bound to cells through antibody ligation on application of a specified magnetic torque. Adhesion of neutrophils to 24-hour tumor necrosis factor-α (TNF-α)–treated ECs, but not to untreated ECs, induced an increase in EC stiffness within 2 minutes, which was accompanied by an increase and a reorganization of F-actin in ECs. A cell-permeant, phosphoinositide-binding peptide attenuated the EC stiffening response, suggesting that intracellular phosphoinositides are required. The stiffening response was not inhibited by ML-7, a myosin light-chain kinase inhibitor, or BAPTA, an intracellular Ca2+ chelator. Moreover, the phosphorylation pattern of the regulatory myosin light chains was unaltered within 15 minutes of neutrophil adherence. These data suggested that the EC stiffening response appeared not to be mediated by myosin light-chain–dependent mechanisms. Concomitantly, neutrophil adhesion to 24-hour TNF-α–treated ECs also induced changes in the biomechanical properties of neutrophils compared to neutrophils bound to untreated ECs. Taken together, these results demonstrated that neutrophil adhesion to TNF-α–treated ECs induces changes in the biomechanical properties of both cell types through actin cytoskeletal remodeling. These changes may modulate neutrophil transmigration across the endothelium during inflammation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3