Affiliation:
1. From the Laboratory of Molecular Biology, Division of Cancer Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD.
Abstract
AbstractThe granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) is a potential target for toxin-directed therapy, because it is overexpressed on many leukemias and solid tumors and apparently not on stem cells. To investigate the potential therapeutic use of GM-CSF toxins, we fused human GM-CSF to truncated forms of either Pseudomonas exotoxin (PE) or diphtheria toxin (DT) and tested the cytotoxicity of the resulting GM-CSF–PE38KDEL and DT388–GM-CSF on human gastrointestinal (GI) carcinomas and leukemias. Toward gastric and colon cancer cell lines, GM-CSF–PE38KDEL was much more cytotoxic than DT388–GM-CSF, with IC50s (concentration resulting in 50% inhibition of protein synthesis) of 0.5 to 10 ng/mL compared with 4 to 400 ng/mL, respectively. In contrast, toward leukemia lines and fresh bone marrow cells DT388–GM-CSF was more cytotoxic than GM-CSF–PE38KDEL. The cytotoxicity of both GM-CSF–PE38KDEL and DT388–GM-CSF toward the human cells was specific, because it could be competed by an excess of GM-CSF. Binding studies indicated that human GM-CSF receptors were present on all of the human GI and leukemic cell lines tested, at levels of 540 to 3,700 sites per cell (kd = 0.2 to 2 nmol/L), and the number of sites per cell did not correlate with the cell type. A similar pattern of cytotoxicity was found with recombinant immunotoxins binding to the transferrin receptor, in that anti-TFR(Fv)–PE38KDEL was much more cytotoxic than DT388–anti-TFR(Fv) toward GI cells, but both were similar in their cytotoxic activity toward leukemia cells. The fact that PE is more effective than DT in killing GI but not leukemic tumor cells targeted by GM-CSF indicates a fundamental difference in the way PE or DT gains access to the cytosol in these cells. GM-CSF–PE38KDEL and DT388–GM-CSF deserve further evaluation as possible treatments for selected tumors.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献