Affiliation:
1. From the Fred Hutchinson Cancer Research Center, Seattle, WA; the Departments of Medicine and Genetics, University of Washington, Seattle, WA; Parker Hughes Institute, St Paul, MN; the University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA; and the South Carolina Cancer Center, Columbia, SC.
Abstract
A genome-wide screening for loss of heterozygosity (LOH), a marker for possible involvement of tumor suppressor genes, was conducted in 53 children with de novo acute myelogenous leukemia (AML). A total of 177 highly polymorphic microsatellite repeat markers were used in locus-specific polymerase chain reactions. This comprehensive allelotyping employed flow-sorted cells from diagnostic samples and whole-genome amplification of DNA from small, highly purified samples. Nineteen regions of allelic loss in 17 patients (32%) were detected on chromosome arms 1q, 3q, 5q, 7q (n = 2), 9q (n = 4), 11p (n = 2), 12p (n = 3), 13q (n = 2), 16q, 19q, and Y. The study revealed a degree of allelic loss underestimated by routine cytogenetic analysis, which failed to detect 9 of these LOH events. There was no evidence of LOH by intragenic markers for p53, Nf1, orCBFA2/AML1. Most lymphocytes lacked the deletions, which were detected only in the leukemic myeloid blast population. Analysis of patients' clinical and biologic characteristics indicated that the presence of LOH was associated with a white blood cell count of 20 × 109/L or higher but was not correlated with a shorter overall survival. The relatively low rate of LOH observed in this study compared with findings in solid tumors and in pediatric acute lymphoblastic leukemia and adult AML suggests that tumor suppressor genes are either infrequently involved in the development of pediatric de novo AML or are inactivated by such means as methylation and point mutations. Additional study is needed to determine whether these regions of LOH harbor tumor suppressor genes and whether specific regions of LOH correlate with clinical characteristics.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献