Distinct functional properties of highly purified hematopoietic stem cells from mouse strains differing in stem cell numbers

Author:

de Haan Gerald1,Szilvassy Stephen J.1,Meyerrose Todd E.1,Dontje Bert1,Grimes Barry1,Van Zant Gary1

Affiliation:

1. From the Department of Cell Biology, University of Groningen, the Netherlands; Division of Hematology/Oncology, Blood and Marrow Transplant Program, Lucille P. Markey Cancer Center, and Department of Physiology, University of Kentucky Medical Center, Lexington, KY.

Abstract

We have previously demonstrated that young adult DBA/2 (DBA) mice have more stem cells than C57BL/6 (B6) mice, as measured in a cobblestone area-forming cell (CAFC) assay using unfractionated marrow. To study the nature of this difference, we have now compared the proliferative fate of single, highly enriched Sca-1+c-kit+Lin−stem cells from these strains. Although equal in frequency, functional comparison revealed that Sca-1+c-kit+Lin−cells from DBA mice contained twice as many cells with CAFC activity. DBA clones persisted much longer in vitro, and developed later in time. To assess whether these differences were of any functional relevance in vivo, we compared engraftment of lethally irradiated mice transplanted with 1000 B6 or DBA Sca-1+c-kit+Lin−cells. Recipients of enriched DBA cells recovered much faster than animals transplanted with B6 cells. We also studied endogenous hematopoietic recovery after 5-fluorouracil (5-FU) treatment in vivo. Progenitors and peripheral blood cells recovered twice as fast in DBA mice. Thus, DBA stem cells have superior proliferative potential compared with phenotypically identical stem cells obtained from B6 mice. Such genetically determined quantitative and qualitative differences in stem cell behavior likely contribute to the dramatically different hematopoietic recovery rates observed in human transplant patients.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3