Affiliation:
1. From the Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
Abstract
Abstract
Osteoclasts are bone resorbing cells of hematopoietic origin; however, a progenitor cell population that gives rise to mature osteoclasts remains elusive. We have characterized a unique cell surface phenotype of clonogenic osteoclast progenitors (colony-forming unit–osteoclast [CFU-O]) and obtained a marrow cell population selectively enriched for these progenitors. Whole bone marrow cells were sequentially separated based on physical and cell surface characteristics, and the presence of CFU-O and other hematopoietic progenitors was examined. CFU-O was enriched in a nonadherent, low-density, lineage-marker–negative (Lin−), Thy1.2-negative (Thy1.2−), Sca1-negative (Sca1−), and c-kit–positive (c-kit+) population, as were the progenitors that were responsive to macrophage–colony-stimulating factor(CSF; CFU-M), granulocyte-macrophage-CSF (CFU-GM), and stem cell factor (CFU-SCF). When the Lin−Thy1.2−Sca1−population was divided into c-kithigh and c-kitlow populations based on c-kit fluorescence, over 88% of CFU-M, CFU-GM, and CFU-SCF were found in the c-kithighpopulation. In relation to the above mentioned hematopoietic progenitors, CFU-O was significantly higher in the c-kitlowpopulation: 80% of progenitors present in the c-kitlowpopulation were CFU-O. The CFU-O in both c-kithigh and c-kitlow populations showed key features of the osteoclast: multinucleated tartrate-resistant acid phosphatase–positive cell formation, expressions of vitronectin receptors, c-src and calcitonin receptors, and bone resorption. We have identified a progenitor cell population in the earliest stage of the osteoclast lineage so far described and developed a method to isolate it from other hematopoietic progenitors. This should help pave the way to understand the molecular mechanisms of osteoclast differentiation.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献