Isolation and Characterization of Murine Clonogenic Osteoclast Progenitors by Cell Surface Phenotype Analysis

Author:

Muguruma Yukari1,Lee Minako Y.1

Affiliation:

1. From the Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.

Abstract

Abstract Osteoclasts are bone resorbing cells of hematopoietic origin; however, a progenitor cell population that gives rise to mature osteoclasts remains elusive. We have characterized a unique cell surface phenotype of clonogenic osteoclast progenitors (colony-forming unit–osteoclast [CFU-O]) and obtained a marrow cell population selectively enriched for these progenitors. Whole bone marrow cells were sequentially separated based on physical and cell surface characteristics, and the presence of CFU-O and other hematopoietic progenitors was examined. CFU-O was enriched in a nonadherent, low-density, lineage-marker–negative (Lin−), Thy1.2-negative (Thy1.2−), Sca1-negative (Sca1−), and c-kit–positive (c-kit+) population, as were the progenitors that were responsive to macrophage–colony-stimulating factor(CSF; CFU-M), granulocyte-macrophage-CSF (CFU-GM), and stem cell factor (CFU-SCF). When the Lin−Thy1.2−Sca1−population was divided into c-kithigh and c-kitlow populations based on c-kit fluorescence, over 88% of CFU-M, CFU-GM, and CFU-SCF were found in the c-kithighpopulation. In relation to the above mentioned hematopoietic progenitors, CFU-O was significantly higher in the c-kitlowpopulation: 80% of progenitors present in the c-kitlowpopulation were CFU-O. The CFU-O in both c-kithigh and c-kitlow populations showed key features of the osteoclast: multinucleated tartrate-resistant acid phosphatase–positive cell formation, expressions of vitronectin receptors, c-src and calcitonin receptors, and bone resorption. We have identified a progenitor cell population in the earliest stage of the osteoclast lineage so far described and developed a method to isolate it from other hematopoietic progenitors. This should help pave the way to understand the molecular mechanisms of osteoclast differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Origin of Osteoclasts: Osteoclast Precursor Cells;Journal of Bone Metabolism;2023-05-31

2. Cytokines and the pathogenesis of osteoporosis;Marcus and Feldman's Osteoporosis;2021

3. Cytokines and Bone: Osteoimmunology;Bone Regulators and Osteoporosis Therapy;2020

4. Foxp3+ Regulatory T Cells in Bone and Hematopoietic Homeostasis;Frontiers in Endocrinology;2019-09-10

5. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling;Journal of Cellular Physiology;2017-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3