Glass needle–mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells

Author:

Davis Brian R.1,Yannariello-Brown Judith1,Prokopishyn Nicole L.1,Luo Zhongjun1,Smith Mark R.1,Wang Jue1,Carsrud N. D. Victor1,Brown David B.1

Affiliation:

1. From Sealy Center for Oncology and Hematology, Department of Microbiology and Immunology, Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston; Gene-Cell, Inc, Houston, TX; and Frederick Cancer Research and Development Center, National Cancer Institute, Frederick, MD.

Abstract

A novel glass needle–mediated microinjection method for delivery of macromolecules, including proteins and larger transgene DNAs, into the nuclei of blood stem/progenitor cells was developed. Temporary immobilization of cells to extracellular matrix–coated dishes has enabled rapid and consistent injection of macromolecules into nuclei of CD34+, CD34+/CD38−, and CD34+/CD38−/Thy-1lo human cord blood cells. Immobilization and detachment protocols were identified, which had no adverse effect on cell survival, progenitor cell function (colony forming ability), or stem cell function (NOD/SCID reconstituting ability). Delivery of fluorescent dextrans to stem/progenitor cells was achieved with 52% ± 8.4% of CD34+ cells and 42% ± 14% of CD34+/CD38−cells still fluorescent 48 hours after injection. Single-cell transfer and culture of injected cells has demonstrated long-term survival and proliferation of CD34+ and CD34+/CD38−cells, and retention of the ability of CD34+/CD38− cells to generate progenitor cells. Delivery of DNA constructs (currently ≤ 19.6 kb) and fluorescently labeled proteins into CD34+ and CD34+/CD38− cells was achieved with transient expression of green fluorescent protein observed in up to 75% of injected cells. These data indicate that glass needle–mediated delivery of macromolecules into primitive hematopoietic cells is a valuable method for studies of stem cell biology and a promising method for human blood stem cell gene therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3