Cure of disseminated xenografted human Hodgkin's tumors by bispecific monoclonal antibodies and human T cells: the role of human T-cell subsets in a preclinical model

Author:

Renner C1,Bauer S1,Sahin U1,Jung W1,van Lier R1,Jacobs G1,Held G1,Pfreundschuh M1

Affiliation:

1. Med. Klinik und Poliklinik, Innere Medizin I, Saarland University Medical School, Homburg, Germany.

Abstract

Cure of a single established human Hodgkin's tumor growing subcutaneously in severe combined immunodeficient (SCID) mice can be achieved with a complex protocol using two bispecific monoclonal antibodies (Bi-MoAb) directed against the Hodgkin's associated CD30 antigen and the T-cell triggering molecules CD3 and CD28, respectively, together with human T cells prestimulated in vitro with Bi-MoAbs in the presence of CD30+ cells. To adapt this model to the clinical situation, disseminated tumors were established in SCID mice by intravenous injection of 2 x 10(7) cells of the Hodgkin's derived cell line L540CY. Treatment of SCID mice bearing disseminated CD30+ Hodgkin's tumors with the combination of CD3/CD30 and CD28/CD30 Bi-MoAbs and naive (ie, not in vitro prestimulated) human T cells resulted in the cure of all appropriately treated animals. T lymphocytes obtained from patients with advanced stage untreated Hodgkin's disease were as effective as lymphocytes from healthy controls. Treatment was effective even when delayed until 2 weeks after tumor inoculation, and application of Bi- MoAbs into SCID mice with circulating human T cells was as effective as injecting the Bi-MoAbs before the lymphocytes. Treatment results with isolated CD4+ and CD8+ human T cells suggest that both subsets are necessary for the Bi-MoAb mediated cure of xenografted human tumors in vivo. The efficacy and practicability of this preclinical immunotherapy protocol support and form the basis for the clinical evaluation of this approach in patients with Hodgkin's disease resistant to standard therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3