Molecular analysis of glucose phosphate isomerase deficiency associated with hereditary hemolytic anemia

Author:

Kanno H1,Fujii H1,Hirono A1,Ishida Y1,Ohga S1,Fukumoto Y1,Matsuzawa K1,Ogawa S1,Miwa S1

Affiliation:

1. Okinaka Memorial Institute For Medical Research, Tokyo, Japan.

Abstract

We report here two new cases of glucose phosphate isomerase (GPI) deficiency associated with hemolytic anemia and present the results of molecular analysis of the five Japanese GPI variants. A Japanese girl (GPI Fukuoka) had an episode of prolonged neonatal jaundice and at 3 years of age was admitted due to acute hemolytic crisis occurring with upper respiratory tract infection. Red blood cell (RBC) GPI activity was decreased to 11.8% of normal and the reduced glutathione (GSH) level of RBCs was slightly decreased. A 54-year-old Japanese man (GPI Iwate) was hospitalized due to chronic active hepatitis, and compensated hemolysis was noted. RBC GPI activity of the proband was decreased to 18.8%, and the GSH content was about half of the normal mean value. Sequencing of the reticulocyte GPIcDNA showed homozygous missense mutations 1028CAG-->CGG (343Gln-->Arg), 14ACC-->A7C (5Thr-- >lle), 671ACG-->A7G (224Thr-->Met), and 1615GAC-->AAC (539Asp-->Asn) in GPI Narita, GPI Matsumoto, GPI Iwate, and GPI Fukuoka, respectively. We also identified GPI Kinki as a compound heterozygote of 1124ACA-- >AGA(375Thr-->Arg)/ 1615GAC-->AAC(539Asp-->Asn). Our findings, together with the previous results of other investigators, showed that the GPI gene mutations so far identified were heterogeneous, although most GPI variants had common biochemical characteristics such as heat instability and normal kinetics. Several amino acid substitutions were identified in the proximity of the catalytically important amino acid residues such as Ser/Asp 159/160, Asp341, and Lys518, which have been identified in the structural analysis of the pig GPI. The molecular characterization of human GPI variants, therefore, may provide new insights into the genotype-phenotype correlation of GPI deficiency as well as the structure-function relationship of this enzyme.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3