Murine spleen stromal cell line SPY3-2 maintains long-term hematopoiesis in vitro

Author:

Tsuchiyama J1,Mori M1,Okada S1

Affiliation:

1. Department of Pathology, Okayama University Medical School, Japan.

Abstract

The hematopoietic microenvironment (HIM) of mouse spleen predominantly induces the differentiation of hematopoietic progenitors into erythroid lineage in vivo. However, the mechanisms of this phenomenon have not been fully explored because of the lack of an adequate in vitro system mimicking the spleen hematopoiesis. To reconstruct the HIM of mouse spleen in vitro, we established spleen stromal cell lines from a three-dimensional (3D) spleen primary culture in collagen gel matrix. Of these, SPY3–2 cells were negative for preadipocytic and endothelial markers, had a fibroblastoid morphology, and were not converted to adipocytes in the presence of 1 mumol/L hydrocortisone. They supported the maintenance and multilineal differentiation of hematopoietic progenitor cells for more than 8 weeks in vitro. The differentiated hematopoietic cells in the coculture medium were predominantly monocytes rather than granulocytes. Furthermore, erythropoiesis was predominantly induced in the presence of 2 U/mL erythropoietin and continued for more than 12 weeks. The number of burst-forming units-erythroid (BFU-E) was increased 10 times after 3 weeks of coculture, which was followed by pronounced production of erythroid cells in the coculture after week 4. SPY3–2 expressed high levels of c-kit ligand and low levels of granulocyte macrophage colony-stimulating factor and interleukin-3, and these molecules were all involved in this long-term erythropoiesis. Thus, the clonal SPY3–2 cell line will provide a novel HIM in vitro analogous to that of mouse spleen in vivo. These results suggest that 3D collagen gel culture may facilitate the establishment of functioning stromal cell lines of hematopoietic organ.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3