Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals

Author:

Limpens J1,Stad R1,Vos C1,de Vlaam C1,de Jong D1,van Ommen GJ1,Schuuring E1,Kluin PM1

Affiliation:

1. Departments of Pathology and Human Genetics, University of Leiden, The Netherlands.

Abstract

Successive oncogenic steps are necessary to generate cancer. In many B-cell lymphomas, chromosomal translocations are considered to be an early oncogenic hit. We investigated whether the lymphoma-associated t(14;18) involving the BCL2 oncogene can occur outside the context of malignancy. To this end, we extensively screened blood cells from healthy blood donors by a very sensitive seminested polymerase chain reaction (PCR) for breakpoint junctions at JH1–5 on 14q32 and the major breakpoint region of BCL2 on 18q21. In each individual, mononuclear cells, granulocytes, flow-sorted B cells, and T cells were separately tested in five to seven independently performed PCRs (in total, 0.5 x 10(6) to 1.0 x 10(6) cells per fraction per individual). Amplification products that hybridized with an internal BCL2 probe and a JH probe were sequenced. Six of nine individuals harbored t(14;18) breakpoints. Translocations were restricted to B cells, with an estimated frequency of 1 in 10(5) or less circulating B cells. In total, 23 of 51 experiments on B cells were positive in contrast to 1 of 48 on T cells and 2 of 47 experiments on granulocytes. Consistent with the presence of 4.7% to 13.0% B cells in the mononuclear cell fractions, only very few (4 of 47) tests were positive in these fractions. Sequence analysis showed that four of six individuals harbored two to five unrelated t(14;18)-carrying B-cell clones. All breakpoints had a structure similar to that in follicular lymphoma. We propose that B cells with the t(14;18) translocation are regularly generated in normal individuals, but that only very few cells with the translocation will acquire the additional oncogenic hits necessary to establish the malignant phenotype.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3