Human Cytomegalovirus-Associated Immunosuppression Is Mediated Through Interferon-α

Author:

Noraz Nelly1,Lathey Janet L.1,Spector Stephen A.1

Affiliation:

1. From the Department of Pediatrics and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA.

Abstract

Abstract Human cytomegalovirus (HCMV) infections are commonly associated with a generalized immunologic hyporesponsiveness. The present study was designed to evaluate the potential mechanisms of HCMV-associated immunosuppression. In our initial experiments, monocytes in peripheral blood mononuclear cells (PBMCs) exposed to cell-free HCMV appeared morphologically less differentiated than monocytes in PBMCs exposed to a mock preparation. These morphologic changes were closely correlated with a decrease in monocyte oxidative activity and occurred under noncytopathic conditions. HCMV-associated suppression of monocyte differentiation did not require virus replication, occurred in PBMCs from either HCMV seropositive or seronegative donors, and required HCMV interaction with the nonadherent cells. An HCMV-induced soluble factor was found to not only reproduce the identical changes in purified monocytes but to inhibit the phagocytic activity of these cells. Additionally, the HCMV-induced factor accounted for a generalized defect in the ability of PBMCs to proliferate in response to mitogens and recall antigens. In subsequent experiments, interferon-α (IFN-α) was identified as the soluble factor involved in these immunosuppressive effects. Thus, PBMCs, when exposed to HCMV, produce a soluble factor, identified as IFN-α, that appears to be an important mediator of immunosuppression associated with HCMV infection.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Immune Responses in Infections of the Central Nervous System;Viral and Fungal Infections of the Central Nervous System: A Microbiological Perspective;2023

2. In Vitro Anticancer and Antivirus Activities of Cyano- and Bis(Trifluoromethylsulfonyl)imide-Based Ionic Liquids;ACS Sustainable Chemistry & Engineering;2021-11-23

3. Sekundäre Immundefekte bei Kindern und Jugendlichen;Pädiatrie;2020

4. Sekundäre Immundefekte;Pädiatrie;2020

5. Total chemical synthesis of human interferon alpha-2b via native chemical ligation;Journal of Peptide Science;2015-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3