Characterization of ultrasound-potentiated fibrinolysis in vitro

Author:

Blinc A1,Francis CW1,Trudnowski JL1,Carstensen EL1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine and Dentistry, NY.

Abstract

We have characterized the effects of ultrasound on fibrinolysis in vitro to investigate the mechanism of ultrasonic potentiation of fibrinolysis and to identify potentially useful ultrasound parameters for therapeutic application. Radiolabeled clots in thin walled tubes were exposed to ultrasound fields in a water bath at 37 degrees C, and lysis was measured by solubilization of radiolabel. Ultrasound accelerated lysis of plasma, whole blood, and purified fibrin clots mediated by recombinant tissue-type plasminogen activator (rt-PA), urokinase, or streptokinase, but ultrasound by itself caused no clot solubilization. The degree of ultrasonic potentiation was dependent on plasminogen activator concentration, increasing from 2.2-fold at a streptokinase concentration of 75 U/mL to 5.5-fold at 250 U/mL in a 1 MHz ultrasound field at 4 W/cm2. Ultrasound exposure resulted in heating due to absorption by the plastic tube, but the temperature increase was insufficient to account for the increase in clot lysis rate, indicating that the primary effect was nonthermal. Ultrasound did not accelerate hydrolysis of a peptide substrate by rt-PA and did not alter the rate of plasmic degradation of fibrinogen, indicating that the augmentation of enzymatic fibrinolysis required the presence of a fibrin gel. The acceleration of fibrinolysis by ultrasound was greater at higher intensities and duty cycles and was maximum at frequencies between 1 and 2.2 MHz, but decreased at 3.4 MHz. These findings suggest that ultrasound accelerates enzymatic fibrinolysis by increasing transport of reactants through a cavitation-related mechanism.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3