Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst

Author:

Hofstra TC1,Kalra VK1,Meiselman HJ1,Coates TD1

Affiliation:

1. Department of Pediatrics, Childrens Hospital Los Angeles, CA 90027, USA.

Abstract

The vasoocclusive process in patients with sickle cell disease (SCD) is complex and involves interactions among sickle erythrocytes (SS-RBC), vascular endothelium, and plasma and cellular components. The role of neutrophils (PMN) in vasoocclusion has not been examined. Patients with SCD appear to have chronically activated PMN. Because the first step in PMN activation is particle recognition, we explored whether normal PMN recognize SS-RBC and whether this recognition results in PMN monolayers, significantly more SS-RBC adhered to the PMN than did normal erythrocytes (AA-RBC; P < .001). Preincubation of erythrocytes with autologous plasma significantly increased the adherence of SS-RBC to PMN but had no effect on AA-RBC (P < .001). When adhesion of density fractionated SS-RBC was performed, dense SS-RBC showed greater adherence to the PMN monolayers than did light SS-RBC (P < .001). To determine mechanisms of this adhesion, IgG and Arg-Gly-Asp-Ser (RGDS) receptor sites on PMN were saturated. IgG inhibited adherence of dense SS-RBC, whereas RGDS inhibited adherence in both fractions, although to a greater extent in the light fraction. We measured SS-RBC activation of PMN by incubating SS-RBC with 2′, 7′-Dichloro-fluroescin Diacetate (DCF)-labeled PMN. Incubation of PMN with SS-RBC resulted in a significant increase in fluorescence compared to AA-RBC. We show here that PMN recognize SS-RBC through multiple mechanisms and that this recognition results in activation of PMN. These findings contribute to the understanding of vasoocclusive crisis in patients with SCD and may have therapeutic implications.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3