In vivo trafficking, cell cycle activity, and engraftment potential of phenotypically defined primitive hematopoietic cells after transplantation into irradiated or nonirradiated recipients

Author:

Plett P. Artur1,Frankovitz Stacy M.1,Orschell-Traycoff Christie M.1

Affiliation:

1. From the Department of Medicine, Indiana University School of Medicine, Indianapolis, IN.

Abstract

Recent interest in bone marrow (BM) transplantation in nonconditioned or minimally conditioned recipients warrants investigation of homing patterns of transplanted hematopoietic progenitor cells (HPCs) in irradiated and nonirradiated recipients. To this end, phenotypically defined populations of BM cells were tracked in lethally irradiated or nonirradiated mice at 1, 3, 6, and 24 hours after transplantation. Recovery of transplanted cells at all time points was higher in BM of nonirradiated mice, similar to earlier suggestions. The percentage of lineage-negative Sca-1+cells and Sca-1+ cells expressing CD43, CD49e, and CD49d steadily increased in BM of nonirradiated mice up to 24 hours, while fluctuating in irradiated mice. Cell cycle status and BrdU incorporation revealed that less than 20% of Sca-1+ cells and fewer Sca-1+lin− cells had cycled by 24 hours after transplantation. To more directly examine trafficking of primitive HPCs, purified grafts of CD62L− or CD49e+ subfractions of Sca-1+lin−cells, previously shown to be enriched for long-term repopulating cells, also were tracked in vivo. Recovery of purified cells was similarly increased in BM of nonirradiated mice. When 50 to 100 of these BM-homed cells were examined in serial transplantation studies, BM-homed cells from initially nonirradiated mice were enriched 5- to 30-fold for cells capable of long-term hematopoiesis in secondary recipients. Collectively, these data suggest that homing or survival of transplanted cells in irradiated recipients is less efficient than that in nonirradiated recipients, implicating an active role of radiation-sensitive microenvironmental cues in the homing process. These results may have important clinical implications in the design of BM transplantation protocols.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3