Antithrombin-Independent Thrombin Inhibitors, but Not Factor Xa Inhibitors, Enhance Thrombin Generation in Human Plasma Via Inhibition of Thrombin-Thrombomodulin-Protein C System.

Author:

Morishima Yoshiyuki1,Furugohri Taketoshi1,Shiozaki Yoko1,Sugiyama Nobutoshi1,Shibano Toshiro1

Affiliation:

1. New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd, Tokyo, Japan

Abstract

Abstract Rebound like recurrent thrombotic events are concerns about anticoagulant therapies. Withdrawal of heparins and a direct thrombin inhibitor is reported to be associated with evidence of rebound coagulation phenomenon in patients with coronary artery diseases (Ref 1). Previously we have shown that low-dose administration of a direct thrombin inhibitor, melagatran, enhances coagulation induced by tissue factor (TF) in rats (Ref 2). Objectives: To determine whether anticoagulants enhance thrombin generation in human plasma, and whether the negative-feedback system [thrombin-thrombomodulin (TM)-protein C] contributes to the enhancement. Methods: Thrombin generation in pooled human plasma was assayed by means of the calibrated automated thrombography (CAT) with the thrombinoscope software in vitro. Thrombin generation was induced by 2.5 pM tissue factor (TF) and 4 μM phospholipids. The effects of following anticoagulants were assessed: antithrombin (AT)-independent thrombin inhibitors [melagatran, recombinant hirudin (lepirudin), and active site blocked thrombin (IIai)], AT-dependent anticoagulants (heparin, dalteparin, and fondaparinux), and AT-independent FXa inhibitors (DU-176b and DX-9065a). Results: Melagatran, lepirudin, and IIai increased peak levels of thrombin generation in the presence of 8 nM recombinant human soluble TM. The effects reached maximal at 200 nM of melagatran (2.3-fold), 8.95 nM of lepirudin (1.6-fold), and 405 nM of IIai (2.2-fold). At higher concentrations, melagatran and lepirudin turned to suppress thrombin generation. Heparin, dalteparin, fondaparinux, DU-176b, and DX-9065a did not enhance thrombin generation, just exerted inhibitory effects. In the absence of TM, the enhancement by melagatran of peak thrombin generation was only 1.2-fold, suggesting the significant role of the negative-feedback system in this aggravation of thrombin generation. Since thrombin acts both the pro- and anti-coagulant, the inhibition of the negative-feedback system by these thrombin inhibitors may cause enhancement of thrombin generation. To test this hypothesis, we examined thrombin generation in protein C-deficient plasma. AT-independent thrombin inhibitors failed to enhance thrombin generation in protein C-deficient plasma. Conclusions: These results indicate that AT-independent thrombin inhibitors at low concentrations enhance thrombin generation probably due to suppression of the negative feedback system by inhibiting protein C activation. This in vitro aggravation of thrombin generation may be a possible explanation of hypercoagulation by melagatran in a rat model of TF-induced intravascular coagulation. Furthermore this phenomenon would contribute to clinical rebound like recurrent thrombotic events associated with anticoagulant therapies with these inhibitors. In contrast, AT-independent FXa inhibitors like DU-176b are less prone to induce the rebound because of lack of increase in thrombin generation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference2 articles.

1. Kontny F. Am. J. Cardiol.1997;80:55E–60E.

2. Furugohri T et al. Eur. J. Pharmacol.2005;514:35–42.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oral factor Xa inhibitors for the long-term management of ACS;Nature Reviews Cardiology;2012-02-21

2. Factor Xa or thrombin: is factor Xa a better target?;Journal of Thrombosis and Haemostasis;2007-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3