Bone Marrow Adipocyte Shapes Metabolism and Immunity in Tumor Microenvironment to Promote Multiple Myeloma

Author:

Shu Lingling12,Li Jinyuan34,Chen Shuzhao5,Huang Han-Ying4,Li Yang3,Liang Yang67

Affiliation:

1. State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China

2. Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

3. Sun Yat-sen University Cancer Center, Guangzhou, China

4. State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

5. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

6. Yale University School of Medicine Yale Cancer Center, New Haven, CT

7. State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China, Sun Yat-sen University Cancer Center, Guangzhou, China

Abstract

Abstract Multiple myeloma (MM) often occurs in middle-aged, elderly and obese patients with ectopic accumulation of fat cells in the bone marrow. Bone marrow adipocytes (BMAs) display unique immunomodulatory properties instead of simply providing energy substrates, which can cause distinct change of bone marrow microenvironment. Although BMA accounts for 70% of the total volume of bone marrow, the mechanism on how BMA affects tumor progression remains elusive. This study aims to explore the pathogenesis of BMA in promoting myeloma and new potential treatment strategies targeting bone marrow microenvironment. Newly diagnosed MM patients in our cancer center and their relative healthy controls are recruited. A significant increase of BMA quantity in multiple myeloma patients was observed. Moreover, analysis of transcriptome sequencing data of BMA derived from MM patients demonstrated a distinctive gene expression profiles (Fig A). It worth to note that, expression of fatty acid-binding protein 4 (FABP4, also known as A-FABP or aP2), a member of the FABP family abundantly expressed in adipocytes, functions as a lipid-binding chaperone that regulates trafficking and cellular signaling of fatty acids, and plays an important role in linking lipid metabolism with immunity and inflammation, was increased significantly in BMA of MM patients (Fig B). To further explore the role of FABP4 in pathogenesis in MM, FABP4 knockout (KO) mice and their wide-type (WT) littermates were adopted, and fed with standard chow (STC) or high-fat diet (HFD, 45 kcal % Fat, D12451). FABP4 deficiency significantly attenuated the tumor burden and MM-related osteolytic lesions in mice fed with HFD (Fig C-D). Moreover, levels of pro-inflammatory cytokines including TNFα, IL-6, RANKL and DPP4 were significantly reduced in FABP4 deficient adipocytes (Fig E). Flow cytometry analysis showed that the infiltration and pro-inflammatory polarization (M1/M2) of macrophages (MΦ) decreased significantly in FABP4 KO bone marrow (Fig F). In addition, FABP4 promoted the infiltration of Th1 and Th17 cells, while impaired the recruitment of Th2 and Treg cells (Fig G). Furthermore, administration of exogenous FABP4 recombinant protein significantly increased the fatty acid uptake and oxygen consumption of myeloma cells (Fig H). In contrast, pharmacological inhibition of FABP4 with BMS309403 alleviated the invasion and metastasis of MM in mice fed with HFD (Fig I-J). In summary, BMA increased in MM patients, reshapes the metabolism and immunity in bone marrow microenvironment through regulating FABP4 functions. FABP4 enhanced the energy and lipid metabolism of myeloma cells, and manipulated the bone marrow microenvironment to pro-tumor environment, therefore promoted the proliferation and migration of myeloma cells. This study will not only clarify the critical role of BMA in MM pathogenesis, but also provide therapeutic potential of FABP4 selective inhibitor BMS309403 for multiple myeloma treatment, especially for obese MM patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3