Tumor-specific Th17-polarized cells eradicate large established melanoma

Author:

Muranski Pawel1,Boni Andrea1,Antony Paul A.1,Cassard Lydie1,Irvine Kari R.1,Kaiser Andrew1,Paulos Chrystal M.1,Palmer Douglas C.1,Touloukian Christopher E.1,Ptak Krzysztof2,Gattinoni Luca1,Wrzesinski Claudia1,Hinrichs Christian S.1,Kerstann Keith W.1,Feigenbaum Lionel3,Chan Chi-Chao4,Restifo Nicholas P.1

Affiliation:

1. Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health, Mark O. Hatfield Clinical Research Center, Bethesda, MD;

2. National Institute of Neurological Disorders and Stroke, Bethesda, MD;

3. Science Applications International Corporation (SAIC), NCI, Frederick, MD; and

4. Laboratory of Immunology, National Eye Institute, Bethesda, MD

Abstract

Abstract CD4+ T cells can differentiate into multiple effector subsets, but the potential roles of these subsets in anti-tumor immunity have not been fully explored. Seeking to study the impact of CD4+ T cell polarization on tumor rejection in a model mimicking human disease, we generated a new MHC class II-restricted, T-cell receptor (TCR) transgenic mouse model in which CD4+ T cells recognize a novel epitope in tyrosinase-related protein 1 (TRP-1), an antigen expressed by normal melanocytes and B16 murine melanoma. Cells could be robustly polarized into Th0, Th1, and Th17 subtypes in vitro, as evidenced by cytokine, chemokine, and adhesion molecule profiles and by surface markers, suggesting the potential for differential effector function in vivo. Contrary to the current view that Th1 cells are most important in tumor rejection, we found that Th17-polarized cells better mediated destruction of advanced B16 melanoma. Their therapeutic effect was critically dependent on interferon-γ (IFN-γ) production, whereas depletion of interleukin (IL)–17A and IL-23 had little impact. Taken together, these data indicate that the appropriate in vitro polarization of effector CD4+ T cells is decisive for successful tumor eradication. This principle should be considered in designing clinical trials involving adoptive transfer–based immunotherapy of human malignancies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3