Antithrombotic effects of targeting αIIbβ3 signaling in platelets

Author:

Ablooglu Ararat J.1,Kang Jian1,Petrich Brian G.1,Ginsberg Mark H.1,Shattil Sanford J.1

Affiliation:

1. Department of Medicine, University of California San Diego, La Jolla

Abstract

Abstract αIIbβ3 interaction with fibrinogen promotes Src-dependent platelet spreading in vitro. To determine the consequences of this outside-in signaling pathway in vivo, a “β3(Δ760-762)” knockin mouse was generated that lacked the 3 C-terminal β3 residues (arginine-glycine-threonine [RGT]) necessary for αIIbβ3 interaction with c-Src, but retained β3 residues necessary for talin-dependent fibrinogen binding. β3(Δ760-762) mice were compared with wild-type β3+/+ littermates, β3+/− heterozygotes, and knockin mice where β3 RGT was replaced by β1 C-terminal cysteine-glycine-lysine (EGK) to potentially enable signaling by Src kinases other than c-Src. Whereas β3+/+, β3+/− and β3/β1(EGK) platelets spread and underwent tyrosine phosphorylation normally on fibrinogen, β3(Δ760-762) platelets spread poorly and exhibited reduced tyrosine phosphorylation of c-Src substrates, including β3 (Tyr747). Unlike control mice, β3(Δ760-762) mice were protected from carotid artery thrombosis after vessel injury with FeCl3. Some β3(Δ760-762) mice exhibited prolonged tail bleeding times; however, none demonstrated spontaneous bleeding, excess bleeding after surgery, fecal blood loss, or anemia. Fibrinogen binding to β3(Δ760-762) platelets was normal in response to saturating concentrations of protease-activated receptor 4 or glycoprotein VI agonists, but responses to adenosine diphosphate were impaired. Thus, deletion of β3 RGT disrupts c-Src–mediated αIIbβ3 signaling and confers protection from arterial thrombosis. Consequently, targeting αIIbβ3 signaling may represent a feasible antithrombotic strategy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3