Hepcidin, the hormone of iron metabolism, is bound specifically to α-2-macroglobulin in blood

Author:

Peslova Gabriela1,Petrak Jiri12,Kuzelova Katerina1,Hrdy Ivan3,Halada Petr4,Kuchel Philip W.5,Soe-Lin Shan6,Ponka Prem6,Sutak Robert7,Becker Erika7,Huang Michael Li-Hsuan7,Suryo Rahmanto Yohan7,Richardson Des R.7,Vyoral Daniel127

Affiliation:

1. Institute of Hematology and Blood Transfusion, Prague, Czech Republic;

2. Charles University in Prague, First Faculty of Medicine, Institute of Pathological Physiology, Prague, Czech Republic;

3. Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic;

4. Institute of Microbiology vvi, Academy of Sciences of the Czech Republic, Prague, Czech Republic;

5. School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia;

6. Lady Davis Institute, Montréal, QC; and

7. Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia

Abstract

AbstractHepcidin is a major regulator of iron metabolism. Hepcidin-based therapeutics/diagnostics could play roles in hematology in the future, and thus, hepcidin transport is crucial to understand. In this study, we identify α2-macroglobulin (α2-M) as the specific hepcidin-binding molecule in blood. Interaction of 125I-hepcidin with α2-M was identified using fractionation of plasma proteins followed by native gradient polyacrylamide gel electrophoresis and mass spectrometry. Hepcidin binding to nonactivated α2-M displays high affinity (Kd 177 ± 27 nM), whereas hepcidin binding to albumin was nonspecific and displayed nonsaturable kinetics. Surprisingly, the interaction of hepcidin with activated α2-M exhibited a classical sigmoidal binding curve demonstrating cooperative binding of 4 high-affinity (Kd 0.3 μM) hepcidin-binding sites. This property probably enables efficient sequestration of hepcidin and its subsequent release or inactivation that may be important for its effector functions. Because α2-M rapidly targets ligands to cells via receptor-mediated endocytosis, the binding of hepcidin to α2-M may influence its functions. In fact, the α2-M–hepcidin complex decreased ferroportin expression in J774 cells more effectively than hepcidin alone. The demonstration that α2-M is the hepcidin transporter could lead to better understanding of hepcidin physiology, methods for its sensitive measurement and the development of novel drugs for the treatment of iron-related diseases.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3