Rational Modification of Intestinal Microbiome and Metabolites after Allogeneic Hematopoietic Stem Cell Transplantation with Resistant Starch: A Pilot Study

Author:

Riwes Mary Mansour1,Schmidt Alexander2,Braun Thomas3,Magenau John M.1,Pawarode Attaphol1,Parkin Brian1,Anand Sarah1,Ghosh Monalisa1,Maciejewski John1,King Darren1,Tewari Muneesh4,Choi Sung W.1,Yanik Gregory A.1,Maccready Kristi2,Schmidt Thomas2,Reddy Pavan5

Affiliation:

1. Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI

2. Microbiology and Immunology, University of Michigan, Ann Arbor, MI

3. School of Public Health, University of Michigan, Ann Arbor, MI

4. Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI

5. Department of Internal Medicine, University of Michigan, Ann Arbor, MI

Abstract

Background Graft versus host disease (GVHD) is the principal cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo HCT) and is associated with intestinal microbial dysbiosis. Administration of microbial metabolite butyrate or microbial cocktails of butyrogenic bacteria reduce the severity of acute GVHD in mice. Furthermore, this intestinal microbiome-metabolome axis can be manipulated via dietary intervention in healthy humans with supplementation by defined quantities of resistant potato starch (RPS), an indigestible carbohydrate that is metabolized by intestinal anaerobic commensal bacteria to produce butyrate1. Hereon we aimed to study the feasibility and tolerability of RPS in allo HCT recipients to test the hypothesis that the patients' intestinal microbiome and butyrate levels could be rationally modified by administration of defined quantities of RPS. Methods Between May 8, 2017 and September 30, 2018, we performed a single-center prospective, single arm, pilot study. We recruited adults who were undergoing human leukocyte antigen-matched, related-donor myeloablative allo HCT. Participants received RPS (Bob's Red Mill®) 20 g package orally, once/day for the first 3 days followed by twice daily, from day -7 through day 100 after allo HCT. Feasibility was defined as adherence to ≥ 70 % of scheduled doses in ≥ 60 % of patients. The primary objective was to test adherence to scheduled doses of RPS. Secondary endpoints included assessing tolerability of RPS and its ability to alter representation of RPS-degrading and butyrate-producing bacteria as well as butyrate levels in the intestines of allo HCT recipients. Stool samples were collected in the OMNIgene-Gut® (DNA Genotek) collection kit at baseline before intake of RPS, at time of nadir (day 7-10), engraftment (day 12-18), at day 100, and additional samples were also collected. Fecal microbiome was determined by 16S rRNA gene sequencing and butyrate by liquid chromatography. Results Ten subjects were enrolled. The median age was 57 years (range 52-62 years). All subjects received GVHD prophylaxis with tacrolimus and methotrexate as well as antibiotic prophylaxis with levaquin, and were treated for neutropenic fever with IV cefepime (90%) or IV vancomycin along with IV aztreonam (10%). One patient developed biopsy proven stage I acute GI GVHD with overall grade II acute GVHD (10%). Feasibility exceeded the preset goal of ≥ 70% adherence to scheduled dosages in ≥ 60 % of patients as 8 of the 10 patients (80%) received ≥ 70 % of scheduled doses (Figure 1A). No adverse effects/toxicities attributed to RPS were observed and longitudinal specimens were collected successfully. There was greater abundance of intestinal RPS-degraders such as Ruminococcus bromii, R. lactaris, R. gnavus, and Bifidobacterium spp and butyrate-producers such as Roseburia spp, Faecalibacterium prausnitzii, Eubacterium rectale, and Anaerostipes spp in the 10 patients receiving RPS compared to 15 historical controls after allo HCT (Figure 1B). Butyrate levels were significantly higher in the participants when they were on RPS as compared to pre RPS intake [median (interquartile range): 10.76 (7.62, 19.05) vs. 3.06 (2.32, 6.21) mmoL/kg, p<0.0001, respectively] (Figure 1C). Conclusions Our pilot study of dietary RPS demonstrated feasibility and safety and showed that RPS administration increased butyrate-producing bacteria with a concomitant increase in butyrate levels. A Phase II clinical trial built on these observations to test the efficacy of RPS in mitigating acute GVHD by altering the intestinal microbiome and its metabolites is underway (www.clinicaltrials.gov: NCT02763033). 1. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable responses of human microbiomes to dietary supplementation with resistant starch. Microbiome. 2016;4(1):33. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3