In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors

Author:

Richter Maximilian1,Saydaminova Kamola1,Yumul Roma1,Krishnan Rohini1,Liu Jing2,Nagy Eniko-Eva3,Singh Manvendra3,Izsvák Zsuzsanna3,Cattaneo Roberto4,Uckert Wolfgang35,Palmer Donna6,Ng Philip6,Haworth Kevin G.7,Kiem Hans-Peter7,Ehrhardt Anja2,Papayannopoulou Thalia8,Lieber André19

Affiliation:

1. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA;

2. Institute for Virology and Microbiology, University Witten/Herdecke, Witten, Germany;

3. Mobile DNA Group, Max-Delbrück Center for Molecular Medicine, Berlin, Germany;

4. Department of Molecular Medicine, The Mayo Clinic, Rochester, MN;

5. Molecular Cell Biology and Gene Therapy Group, Institute of Biology, Humboldt University, Berlin, Germany;

6. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX;

7. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA;

8. Division of Hematology, Department of Medicine, and

9. Department of Pathology, University of Washington, Seattle, WA

Abstract

Abstract Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin−Sca1+Kit− cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3