The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin

Author:

Huang Yujie1,Shi Hubing1,Zhou Hao1,Song Xiaomin1,Yuan Shaopeng1,Luo Yongzhang1

Affiliation:

1. From the Laboratory of Protein Chemistry, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.

Abstract

Nucleolin, originally described as a nuclear protein, was recently found to be expressed on the surface of endothelial cells during angiogenic. However, the functions of cell-surface nucleolin in angiogenic remain mysterious. Here we report that upon endothelial cells adhering to extracellular matrix components, vascular endothelial growth factor (VEGF) mobilizes nucleolin from nucleus to cell surface. Functional blockage or down-regulation of the expression of cell-surface nucleolin in endothelial cells significantly inhibits the migration of endothelial cells and prevents capillary-tubule formation. Moreover, nonmuscle myosin heavy chain 9 (MyH9), an actin-based motor protein, is identified as a nucleolin-binding protein. Subsequent studies reveal that MyH9 serves as a physical linker between nucleolin and cytoskeleton, thus modulating the translocation of nucleolin. Knocking down endogenous MyH9, specifically inhibiting myosin activity, or overexpressing functional deficient MyH9 disrupts the organization of cell-surface nucleolin and inhibits its angiogenic function. These studies indicate that VEGF, extracellular matrix, and intracellular motor protein MyH9 are all essential for the novel function of nucleolin in angiogenic.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3