Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis

Author:

Zimmer Stephanie N.12,Zhou Qing1,Zhou Ting12,Cheng Ziming1,Abboud-Werner Sherry L.3,Horn Diane3,Lecocke Mike45,White Ruth6,Krivtsov Andrei V.7,Armstrong Scott A.7,Kung Andrew L.8,Livingston David M.9,Rebel Vivienne I.12

Affiliation:

1. Greehey Children's Cancer Research Institute,

2. Department of Cellular and Structural Biology,

3. Department of Pathology, and

4. Department of Epidemiology & Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX;

5. Department of Mathematics, St. Mary's University, San Antonio, TX;

6. Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR;

7. Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA; and

8. Departments of Pediatric Oncology and

9. Cancer Biology, Dana-Farber Cancer Institute, Boston, MA

Abstract

AbstractCREB-binding protein (CREBBP) is important for the cell-autonomous regulation of hematopoiesis, including the stem cell compartment. In the present study, we show that CREBBP plays an equally pivotal role in microenvironment-mediated regulation of hematopoiesis. We found that the BM microenvironment of Crebbp+/− mice was unable to properly maintain the immature stem cell and progenitor cell pools. Instead, it stimulates myeloid differentiation, which progresses into a myeloproliferation phenotype. Alterations in the BM microenvironment resulting from haploinsufficiency of Crebbp included a marked decrease in trabecular bone that was predominantly caused by increased osteoclastogenesis. Although CFU-fibroblast (CFU-F) and total osteoblast numbers were decreased, the bone formation rate was similar to that found in wild-type mice. At the molecular level, we found that the known hematopoietic modulators matrix metallopeptidase-9 (MMP9) and kit ligand (KITL) were decreased with heterozygous levels of Crebbp. Lastly, potentially important regulatory proteins, endothelial cell adhesion molecule 1 (ESAM1) and cadherin 5 (CDH5), were increased on Crebbp+/− endothelial cells. Our findings reveal that a full dose of Crebbp is essential in the BM microenvironment to maintain proper hematopoiesis and to prevent excessive myeloproliferation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3