Role of erythropoietin receptor signaling in Friend virus-induced erythroblastosis and polycythemia

Author:

Zhang Ji1,Randall Mindy S.1,Loyd Melanie R.1,Li Weimin1,Schweers Rachel L.1,Persons Derek A.1,Rehg Jerold E.1,Noguchi Constance T.1,Ihle James N.1,Ney Paul A.1

Affiliation:

1. From the Departments of Biochemistry, Experimental Hematology, and Pathology, St Jude Children's Research Hospital, Memphis, TN; Integrated Program in Biomedical Science, University of Tennessee Health Science Center, Memphis; and the Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.

Abstract

AbstractFriend virus is an acutely oncogenic retrovirus that causes erythroblastosis and polycythemia in mice. Previous studies suggested that the Friend virus oncoprotein, gp55, constitutively activates the erythropoietin receptor (EPOR), causing uncontrolled erythroid proliferation. Those studies showed that gp55 confers growth factor independence on an interleukin-3 (IL-3)-dependent cell line (Ba/F3) when the EPOR is coexpressed. Subsequently, we showed that a truncated form of the stem-cell kinase receptor (sf-STK) is required for susceptibility to Friend disease. Given the requirement for sf-STK, we sought to establish the in vivo significance of gp55-mediated activation of the EPOR. We found that the cytoplasmic tyrosine residues of the EPOR, and signal transducer and activator of transcription-5 (STAT5), which acts through these sites, are not required for Friend virus-induced erythroblastosis. The EPOR itself was required for the development of erythroblastosis but not for gp55-mediated erythroid proliferation. Interestingly, the murine EPOR, which is required for gp55-mediated Ba/F3-cell proliferation, was dispensable for erythroblastosis in vivo. Finally, gp55-mediated activation of the EPOR and STAT5 are required for Friend virus-induced polycythemia. These results suggest that Friend virus activates both sf-STK and the EPOR to cause deregulated erythroid proliferation and differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3