In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis

Author:

Saudemont Aurore1,Quesnel Bruno1

Affiliation:

1. From the Unité INSERM 524, Institut de Recherche sur le Cancer de Lille, Lille, France; Institut Fédératif de Recherche 114, Lille, France; and Service des Maladies du Sang, Centre Hospitalier et Universitaire (CHU) de Lille, Lille, France.

Abstract

Abstract In tumor dormancy, tumor cells persist in the host over a long period of time but do not grow. We investigated in the DA1-3b mouse model of acute myeloid leukemia how leukemic cells could persist for months in spite of an effective antileukemic immune response. Mice were immunized with irradiated interleukin 12 (IL12)- or CD154-transduced DA1-3b cells, challenged with wild-type DA1-3b cells, and randomly killed during 1-year follow-up. Quantification of residual disease 1 year after challenge showed that persistent leukemic cells represented less than 0.02% of spleen cells in most animals. These residual cells were still able to kill naive hosts, even when isolated after 1 year of persistence. Persistent leukemic cells were more resistant to specific cytotoxic T-cell (CTL)-mediated killing and had enhanced B7-H1 and B7.1 expression proportional to the time they had persisted in the host. Blocking B7-H1 or B7.1/cytotoxic T-lymphocyte-associated antigen (CTLA-4) interaction enhanced CTL-mediated killing of the persistent cells, and blocking B7-H1, B7.1, or CTLA-4 in vivo prolonged survival of naive mice injected with persistent leukemic cells. Thus, escape of leukemic cells from tumor immunity via overexpression of B7-H1 or B7.1 might represent a new mechanism of tumor dormancy in acute leukemia. (Blood. 2004;104:2124-2133)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3