Affiliation:
1. From the Department of Pharmacology, College of Medicine, University of Illinois, Chicago, IL, and the Institute of Clinical Biochemistry and Pathobochemistry, Wuerzburg, Germany.
Abstract
AbstractThe vasodilator-stimulated phosphoprotein (VASP) plays an important role in cGMP-induced platelet inhibition. Since VASP is an in vitro substrate for cGMP-dependent protein kinase (PKG), it has been presumed that VASP phosphorylation induced by cGMP is mediated by PKG. Here we show that, in human platelets, phosphorylation of VASP at Ser239 induced by either cGMP analogs or nitric oxide (NO) donor glyco-SNAP1 is inhibited by PKA inhibitors KT5720, PKI, Rp-Br-cAMPS, and H89, but not by PKG inhibitors KT5823 or Rp-pCPT-cGMPS. Unlike human platelets, cGMP analog–induced phosphorylation of VASP in mouse platelets is inhibited by both PKG and PKA inhibitors. Ineffectiveness of PKG inhibitors in inhibiting VASP phosphorylation in human platelets is not due to an inability to inhibit PKG, as these PKG inhibitors but not PKA inhibitors inhibit a different cGMP-induced intracellular signaling event: phosphorylation of extracellular signal–responsive kinase. Furthermore, PKA inhibitors reverse cGMP-induced inhibition of thrombin-induced platelet aggregation, whereas PKG inhibitors further enhance the inhibitory effect of cGMP analogs. Thus, PKA plays a predominant role in the cGMP-induced phosphorylation of VASP and platelet inhibition in human platelets.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献