Affiliation:
1. From the Departments of Vascular Medicine/Internal Medicine and Pathology and the Laboratory of Experimental Medicine, Academic Medical Center, Amsterdam, the Netherlands; the Division of Angiology, Inselspital Bern, Switzerland; and the Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversitary Institute for Biotechnology, Belgium.
Abstract
AbstractIn the pathogenesis of sepsis and disseminated intravascular coagulation (DIC), dysfunctional anticoagulant pathways are important. The function of the protein C system in DIC is impaired because of low levels of protein C and down-regulation of thrombomodulin. The administration of (activated) protein C results in an improved outcome in experimental and clinical studies of DIC. It is unknown whether congenital deficiencies in the protein C system are associated with more severe DIC. The aim of the present study was to investigate the effect of a heterozygous deficiency of protein C on experimental DIC in mice. Mice with single-allele targeted disruption of the protein C gene (PC+/–) mice and wild-type littermates (PC+/+) were injected with Escherichia coli endotoxin (50 mg/kg) intraperitoneally. PC+/–mice had more severe DIC, as evidenced by a greater decrease in fibrinogen level and a larger drop in platelet count. Histologic examination showed more fibrin deposition in lungs, kidneys, and liver in mice with a heterozygous deficiency of protein C. Interestingly, PC+/– mice had significantly higher levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, indicating an interaction between the protein C system and the inflammatory response. Survival was lower at 12 and 24 hours after endotoxin in the PC+/– mice. These results confirm the important role of the protein C system in the coagulative-inflammatory response on endotoxemia and may suggest that congenital deficiencies in the protein C system are associated with more severe DIC and adverse outcome in sepsis.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献