Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells

Author:

Verneris Michael R.1,Karami Mobin1,Baker Jeanette1,Jayaswal Anishka1,Negrin Robert S.1

Affiliation:

1. From the Division of Pediatric Blood and Marrow Diseases, University of Minnesota, Minneapolis, MN; and Department of Medicine, Division of Bone Marrow Transplantation, Stanford University, Stanford, CA.

Abstract

Abstract Activating and expanding T cells using T-cell receptor (TCR) cross-linking antibodies and interleukin 2 (IL-2) results in potent cytotoxic effector cells capable of recognizing a broad range of malignant cell targets, including autologous leukemic cells. The mechanism of target cell recognition has previously been unknown. Recent studies show that ligation of NKG2D on natural killer (NK) cells directly induces cytotoxicity, whereas on T cells it costimulates TCR signaling. Here we demonstrate that NKG2D expression is up-regulated upon activation and expansion of human CD8+ T cells. Antibody blocking, redirected cytolysis, and small interfering RNA (siRNA) studies using purified CD8+ T cells demonstrate that cytotoxicity against malignant target cells occurs through NKG2D-mediated recognition and signaling and not through the TCR. Activated and expanded CD8+ T cells develop cytotoxicity after 10 to 14 days of culture, coincident with the expression of the adapter protein DAP10. T cells activated and expanded in low (30 U/mL) and high (300 U/mL) concentrations of IL-2 both up-regulated NKG2D expression equally, but only cells cultured in high-dose IL-2 expressed DAP10 and were cytotoxic. Collectively these results establish that NKG2D triggering accounts for the majority of major histocompatibility complex (MHC)–unrestricted cytotoxicity of activated and expanded CD8+ T cells, likely through DAP10-mediated signaling. (Blood. 2004;103: 3065-3072)

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3