Protein phosphatase 2A inactivates Bcl2's antiapoptotic function by dephosphorylation and up-regulation of Bcl2-p53 binding

Author:

Deng Xingming1,Gao Fengqin1,May W. Stratford1

Affiliation:

1. Department of Medicine, Division of Hematology/Oncology, University of Florida Shands Cancer Center, Gainesville

Abstract

Abstract Bcl2 is associated with chemoresistance and poor prognosis in patients with various hematologic malignancies. DNA damage-induced p53/Bcl2 interaction at the outer mitochondrial membrane results in a Bcl2 conformational change with loss of its antiapoptotic activity in interleukin-3–dependent myeloid H7 cells. Here we find that specific disruption of protein phosphatase 2A (PP2A) activity by either expression of small t antigen or depletion of PP2A/C by RNA interference enhances Bcl2 phosphorylation and suppresses cisplatin-stimulated p53/Bcl2 binding in association with prolonged cell survival. By contrast, treatment of cells with C2-ceramide (a potent PP2A activator) or expression of the PP2A catalytic subunit (PP2A/C) inhibits Bcl2 phosphorylation, leading to increased p53/Bcl2 binding and apoptotic cell death. Mechanistically, PP2A-mediated dephosphorylation of Bcl2 in vitro promotes its direct interaction with p53 as well as a conformational change in Bcl2. PP2A directly interacts with the BH4 domain of Bcl2 as a docking site to potentially “bridge” PP2A to Bcl2's flexible loop domain containing the target serine 70 phosphorylation site. Thus, PP2A may provide a dual inhibitory effect on Bcl2's survival function by both dephosphorylating Bcl2 and enhancing p53-Bcl2 binding. Activating PP2A to dephosphorylate Bcl2 and/or increase Bcl2/p53 binding may represent an efficient and novel approach for treatment of hematologic malignancies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3