Northstar-2: Updated Safety and Efficacy Analysis of Lentiglobin Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia and Non-β0/β0 Genotypes
Author:
Thompson Alexis A.12, Walters Mark C.3, Kwiatkowski Janet L.45, Hongeng Suradej6, Porter John B.7, Sauer Martin G.8, Thrasher Adrian J.9, Thuret Isabelle10, Elliot Heidi11, Tao Ge11, Colvin Richard A.11, Locatelli Franco12
Affiliation:
1. Department of Pediatrics (Hematology, Oncology, and Stem Cell Transplantation), Northwestern University Feinberg School of Medicine, Chicago, IL 2. Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 3. USCF Benioff Children's Hospital Oakland, Oakland, CA 4. Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 5. Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 6. Mahidol University, Ramathibodi Hospital, Bangkok, Thailand 7. Haematology Department, University College London Hospitals, London, United Kingdom 8. Pediatric Hematology and Oncology, Medizinische Hochschule Hannover, Hannover, Germany 9. UCL Great Ormond Street Institute of Child Health, London, United Kingdom 10. Pediatric Hematology, Hôpital de la Timone, Marseille, France 11. bluebird bio, Inc., Cambridge, MA 12. Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
Abstract
Background
Transfusion-dependent β-thalassemia (TDT) is treated with regular, lifelong red blood cell (RBC) transfusions and despite iron-chelating therapy, carries a risk of serious organ damage from iron overload and other complications. Transplantation with autologous CD34+ cells encoding a βA-T87Q-globin gene (LentiGlobin for β-thalassemia) is being evaluated in patients with TDT. Interim results are presented here from the ongoing, international, single-arm, phase 3 Northstar-2 study (HGB-207; NCT02906202) of LentiGlobin gene therapy in pediatric, adolescent, and adult patients with TDT (defined by receiving ≥100 mL/kg/yr of RBCs or ≥8 RBC transfusions/yr) and non-β0/β0 genotypes.
Methods
Patients undergo hematopoietic stem cell (HSC) mobilization with G-CSF and plerixafor. Following apheresis, CD34+ cells are transduced with BB305 lentiviral vector and infused into patients after pharmacokinetic-adjusted, single-agent busulfan myeloablation. The primary efficacy endpoint is transfusion independence (TI; weighted average hemoglobin [Hb] ≥9 g/dL without RBC transfusions for ≥12 months). HSC engraftment, βA-T87Q-globin expression, Hb levels, detection of replication competent lentivirus (RCL), and adverse events (AE) are also assessed. Patients are followed for 2 years and offered participation in a long-term follow-up study. Summary statistics are presented as median (min - max).
Results
Twenty patients were treated in Northstar-2 as of 13 December 2018 and have been followed for a median of 8.1 (0.5 - 22.2) months. At enrollment, median age was 16 (8 - 34) years; 5 patients were <12 years of age. Median drug product cell dose was 8.0 (5.0 - 19.9) x106 cells/kg and vector copy number was 3.2 (1.9 - 5.6) copies/diploid genome. Time to neutrophil and platelet engraftment in the 18/20 and 15/20 evaluable patients was 22.5 (13 - 32) and 45 (20 - 84) days, respectively.
Non-hematologic grade ≥3 AEs in ≥3 patients after LentiGlobin infusion included stomatitis (n=12), febrile neutropenia (n=6), pyrexia (n=4), epistaxis (n=3), and veno-occlusive liver disease (n=3). One serious AE of grade 3 thrombocytopenia was considered possibly related to LentiGlobin. No patient died, had graft failure, or had detection of RCL. No insertional oncogenesis has been observed.
Gene therapy-derived HbAT87Q stabilized approximately 6 months after infusion. In adolescent and adult patients treated with LentiGlobin, median HbAT87Q at Months 6, 12 and 18 was 9.5 (n=11), 9.2 (n=8), and 9.5 (n=3) g/dL, respectively. The median total Hb without transfusions at Months 6, 12, and 18 were 11.9 (n=11), 12.4 (n=8), 12.3 (n=2) g/dL, respectively. At Month 6, 91% (10/11) of patients had total Hb of >11 g/dL without transfusions.
Five adolescent and adult patients were evaluable for the primary endpoint of transfusion independence, 4 (80%) of whom achieved TI. The median weighted average Hb during TI was 12.4 (11.5 - 12.6) g/dL which compared favorably to pre-transfusion nadir Hb levels before enrollment (median 9.1 g/dL [7.5 - 10.0 g/dL]). At time of analysis, the median duration of TI was 13.6 (12.0 - 18.2) months. One patient who did not achieve TI stopped transfusions for 11.4 months but resumed transfusions due to recurrent anemia. This patient had a 71.4% reduction in RBC transfusion volume from Month 6 to Month 18 compared to baseline.
Marrow cellularity and myeloid:erythroid (M:E) ratios were evaluated in 8 adolescent and adult patients with ≥12 months follow-up to assess the effect of LentiGlobin treatment on dyserythropoiesis. Seven of 8 patients had improved marrow M:E ratios at Month 12 (0.63 - 1.90) compared with baseline (0.14 - 0.48). In patients who stopped transfusions, soluble transferrin receptor levels were reduced by a median of 72% (58% - 78%) at Month 12 (n=6). Updated outcomes in adolescents and adults and outcomes in pediatric patients will be reported.
Summary
In this update of the Northstar-2 study of LentiGlobin gene therapy in patients with TDT and non-β0/β0 genotypes, transfusion independence was observed in 4/5 evaluable adolescent and adults and 10/11 treated patients had total Hb of >11 g/dL without transfusion support 6 months after LentiGlobin infusion. HbAT87Q stabilized approximately 6 months after treatment and patients who stopped RBC transfusions had improved erythropoiesis. A safety profile consistent with busulfan conditioning was observed after LentiGlobin gene therapy.
Disclosures
Thompson: bluebird bio, Inc.: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Baxalta: Research Funding. Walters:TruCode: Consultancy; AllCells, Inc: Consultancy; Editas Medicine: Consultancy. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Terumo: Research Funding; Celgene: Consultancy; Agios: Consultancy; Imara: Consultancy; Apopharma: Research Funding; Novartis: Research Funding. Porter:Protagonism: Honoraria; Celgene: Consultancy, Honoraria; Bluebird bio: Consultancy, Honoraria; Agios: Consultancy, Honoraria; La Jolla: Honoraria; Vifor: Honoraria; Silence therapeutics: Honoraria. Thrasher:Rocket Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orchard Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Generation Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; 4BIOCapital: Membership on an entity's Board of Directors or advisory committees. Thuret:BlueBird bio: Other: investigators for clinical trials, participation on scientific/medical advisory board; Celgene: Other: investigators for clinical trials, participation on scientific/medical advisory board; Novartis: Other: investigators for clinical trials, participation on scientific/medical advisory board; Apopharma: Consultancy. Elliot:bluebird bio, Inc.: Employment, Equity Ownership. Tao:bluebird bio, Inc.: Employment, Equity Ownership. Colvin:bluebird bio, Inc.: Employment, Equity Ownership. Locatelli:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Miltenyi: Honoraria.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|