Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency

Author:

Chen Huijun1,Su Trent1,Attieh Zouhair K.1,Fox Tama C.1,McKie Andrew T.1,Anderson Gregory J.1,Vulpe Chris D.1

Affiliation:

1. From the Department of Nutritional Sciences and Toxicology, University of California, Berkeley; Department of Molecular Medicine, King's College, London, United Kingdom; and Joint Clinical Sciences Program, Queensland Institute of Medical Research and University of Queensland, Royal Brisbane Hospital, Brisbane, Queensland, Australia.

Abstract

AbstractHephaestin is a membrane-bound multicopper ferroxidase necessary for iron egress from intestinal enterocytes into the circulation. Mice with sex-linked anemia (sla) have a mutant form of Hephaestin and a defect in intestinal basolateral iron transport, which results in iron deficiency and anemia. Ireg1 (SLC11A3, also known as Ferroportin1 or Mtp1) is the putative intestinal basolateral iron transporter. We compared iron levels and expression of genes involved in iron uptake and storage in sla mice and C57BL/6J mice fed iron-deficient, iron-overload, or control diets. Both iron-deficient wild-type mice and sla mice showed increased expression of Heph and Ireg1 mRNA, compared to controls, whereas only iron-deficient wild-type mice had increased expression of the brush border transporter Dmt1. Unlike iron-deficient mice, sla mouse enterocytes accumulated nonheme iron and ferritin. These results indicate that Dmt1 can be modulated by the enterocyte iron level, whereas Hephaestin and Ireg1 expression respond to systemic rather than local signals of iron status. Thus, the basolateral transport step appears to be the primary site at which the small intestine responds to alterations in body iron requirements.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3