Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells

Author:

Carotta Sebastian1,Pilat Sandra1,Mairhofer Andreas1,Schmidt Uwe1,Dolznig Helmut1,Steinlein Peter1,Beug Hartmut1

Affiliation:

1. From the Research Institute of Molecular Pathology (IMP), Vienna Biocenter; the Institute of Immunology, Vienna International Research Cooperation Center (VIRCC); and the Institute of Ultrastructural Pathology, General Hospital Vienna (AKH), Vienna, Austria.

Abstract

AbstractDifferentiating embryonic stem (ES) cells are an increasingly important source of hematopoietic progenitors, useful for both basic research and clinical applications. Besides their characterization in colony assays, protocols exist for the cultivation of lymphoid, myeloid, and erythroid cells. With the possible exception of mast cells, however, long-term expansion of pure hematopoietic progenitors from ES cells has not been possible without immortalization caused by overexpression of exogenous genes. Here, we describe for the first time an efficient yet easy strategy to generate mass cultures of pure, immature erythroid progenitors from mouse ES cells (ES-EPs), using serum-free medium plus recombinant cytokines and hormones. ES-EPs represent long-lived, adult, definitive erythroid progenitors that resemble immature erythroid cells expanding in vivo during stress erythropoiesis. When exposed to terminal differentiation conditions, ES-EPs differentiated into mature, enucleated erythrocytes. Importantly, ES-EPs injected into mice did not exhibit tumorigenic potential but differentiated into normal erythrocytes. Both the virtually unlimited supply of cells and the defined culture conditions render our system a valuable tool for the analysis of factors influencing proliferation and maturation of erythroid progenitors. In addition, the system allows detailed characterization of processes during erythroid proliferation and differentiation using wild-type (wt) and genetically modified ES cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3