Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1

Author:

Stachura David L.1,Chou Stella T.1,Weiss Mitchell J.1

Affiliation:

1. From the Cell and Molecular Biology Graduate Program, The University of Pennsylvania School of Medicine, Philadelphia, PA; the Children's Hospital of Philadelphia, Division of Hematology; and the University of Pennsylvania, Philadelphia, PA.

Abstract

AbstractTranscription factor GATA-1 is essential at multiple stages of hematopoiesis. Murine gene targeting and analysis of naturally occurring human mutations demonstrate that GATA-1 drives the maturation of committed erythroid precursors and megakaryocytes. Prior studies also suggest additional, poorly defined, roles for GATA-1 at earlier stages of erythromegakaryocytic differentiation. To investigate these functions further, we stimulated Gata1- murine embryonic stem-cell-derived hematopoietic cultures with thrombopoietin, a multistage cytokine. Initially, the cultures generated a wave of mutant megakaryocytes. However, these were rapidly overgrown by a unique population of thrombopoietin-dependent blasts that express immature markers and proliferate indefinitely. Importantly, on restoration of GATA-1 function, these cells differentiated into both erythroid and megakaryocytic lineages, suggesting that they represent bipotential progenitors. Identical cells are also present in vivo, as indicated by flow cytometry and culture analysis of fetal livers from Gata1- chimeric mice. Our findings indicate that loss of GATA-1 impairs the maturation of megakaryocyte-erythroid progenitors. This defines a new role for GATA-1 at a relatively early stage of hematopoiesis and provides potential insight into recent discoveries that human GATA1 mutations promote acute megakaryoblastic leukemia, a clonal malignancy with features of both erythroid and megakaryocyte maturation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3