HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner

Author:

Scortegagna Marzia1,Ding Kan1,Zhang Quiyang1,Oktay Yavuz1,Bennett Michael J.1,Bennett Michael1,Shelton John M.1,Richardson James A.1,Moe Orson1,Garcia Joseph A.1

Affiliation:

1. From the Departments of Internal Medicine, Pathology, and Molecular Biology, University of Texas Southwestern Medical Center; and the Department of Pathology, Children's Medical Center, Dallas, TX.

Abstract

AbstractErythropoiesis in the adult mammal depends critically on erythropoietin, an inducible cytokine with pluripotent effects. Erythropoietin gene expression increases under conditions associated with lowered oxygen content such as anemia and hypoxia. HIF-1α, the founding member of the hypoxia-inducible factor (HIF) alpha class, was identified by its ability to bind and activate the hypoxia-responsive enhancer in the erythropoietin regulatory region in vitro. The existence of multiple HIF alpha members raises the question of which HIF alpha member or members regulates erythropoietin expression in vivo. We previously reported that mice lacking wild-type HIF-2α, encoded by the EPAS1 gene, exhibit pancytopenia. In this study, we have characterized the etiology of this hematopoietic phenotype. Molecular studies of EPAS1-null kidneys reveal dramatically decreased erythropoietin gene expression. EPAS1-null as well as heterozygous mice have impaired renal erythropoietin induction in response to hypoxia. Treatment of EPAS1-null mice with exogenous erythropoietin reverses the hematopoietic and other defects. We propose that HIF-2α is an essential regulator of murine erythropoietin production. Impairments in HIF signaling, involving either HIF-1α or HIF-2α, may play a prominent role in conditions involving altered hematopoietic or erythropoietin homeostasis.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 197 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3