A murine model for induction of long-term immunologic tolerance to factor VIII does not require persistent detectable levels of plasma factor VIII and involves contributions from Foxp3+ T regulatory cells

Author:

Matsui Hideto1,Shibata Masaru12,Brown Brian1,Labelle Andrea1,Hegadorn Carol1,Andrews Chandler1,Chuah Marinee3,VandenDriessche Thierry3,Miao Carol H.4,Hough Christine1,Lillicrap David1

Affiliation:

1. Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON;

2. Department of Pediatrics, Nara Medical University, Kashihara, Japan;

3. Center for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium; and

4. Department of Pediatrics, University of Washington, Seattle

Abstract

Abstract Under certain instances, factor VIII (FVIII) stimulates an immune response, and the resulting neutralizing antibodies present a significant clinical challenge. Immunotherapies to re-establish or induce long-term tolerance would be beneficial, and an in-depth knowledge of mechanisms involved in tolerance induction is essential to develop immune-modulating strategies. We have developed a murine model system for studying mechanisms involved in induction of immunologic tolerance to FVIII in hemophilia A mice. We used lentiviral vectors to deliver the canine FVIII transgene to neonatal hemophilic mice and demonstrated that induction of long-term FVIII tolerance could be achieved. Hemophilia A mice are capable of mounting a robust immune response to FVIII after neonatal gene transfer, and tolerance induction is dependent on the route of delivery and type of promoter used. High-level expression of FVIII was not required for tolerance induction and, indeed, tolerance developed in some animals without evidence of detectable plasma FVIII. Tolerance to FVIII could be adoptively transferred to naive hemophilia recipient mice, and FVIII-stimulated splenocytes isolated from tolerized mice expressed increased levels of interleukin-10 and decreased levels of interleukin-6 and interferon-γ. Finally, induction of FVIII tolerance mediated by this protocol is associated with a FVIII-expandable population of CD4+CD25+Foxp3+ regulatory T cells.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3