Affiliation:
1. From the Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; and Department of Hematology and Oncology, Karolinska Hospital, Stockholm, Sweden.
Abstract
AbstractMultiple myeloma (MM) is an as-yet incurable B-cell malignancy. Increased survival in vitro is a hallmark of MM cells, implying that a therapeutic potential may lie in circumventing antiapoptotic signals. We have previously reported that interferons (IFNs) sensitize MM cells to Fas/CD95-mediated apoptosis. In the present study, we explore the mechanism underlying this effect. In a wide screening of apoptosis-related genes, Apo2L/TRAIL (tumor necrosis factor [TNF]-related apoptosis inducing ligand) and Fas were identified as IFN targets. Sensitization to Fas-mediated apoptosis by IFNs was not affected by blocking Apo2L/TRAIL, suggesting that Apo2L/TRAIL is not a key mediator in this process. In contrast, we found that an elevated Fas expression was functionally linked to increased susceptibility to Fas-mediated apoptosis. This was further supported by the finding that IFN treatment enhanced Fas-mediated caspase-8 activation, one of the earliest signaling events downstream receptor activation. In addition, IFN treatment attenuated the interleukin 6 (IL-6)-dependent activation of signal transducer and activator of transcription 3 (Stat3), interfering with a known survival pathway in MM that has previously been linked with resistance to Fas-mediated apoptosis. Taken together, our results show that IFN-induced up-regulation of Fas sensitizes MM cells to Fas-mediated apoptosis and suggest that attenuation of Stat3 activation may be a potentially important event in this process. (Blood. 2005;106:1346-1354)
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献