U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7

Author:

Savarese Emina1,Chae Ohk-wha1,Trowitzsch Simon1,Weber Gert1,Kastner Berthold1,Akira Shizuo1,Wagner Hermann1,Schmid Roland M.1,Bauer Stefan1,Krug Anne1

Affiliation:

1. From the Department of Internal Medicine, Technical University Munich, Germany; Institute of Microbiology and Immunology, Technical University Munich, Germany; Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; and Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Japan.

Abstract

Abstract Plasmacytoid dendritic cells (PDCs), which produce IFN-α in response to autoimmune complexes containing nuclear antigens, are thought to be critically involved in the pathogenesis of systemic lupus erythematosus (SLE). One of the immunostimulatory components of SLE immune complexes (SLE-ICs) is self DNA, which is recognized through Tlr9 in PDCs and B cells. Small nuclear ribonucleoproteins (snRNPs) are another major component of SLE-ICs in 30% to 40% of patients. In this study, we show that murine PDCs are activated by purified U1snRNP/anti-Sm ICs to produce IFN-α and proinflammatory cytokines and to up-regulate costimulatory molecules. The induction of IFN-α and IL-6 by U1snRNPs in murine bone marrow–derived PDCs required the presence of intact U1RNA and was largely dependent on Tlr7 but independent of Tlr3. Intracellularly delivered isolated U1snRNA and oligoribonucleotides derived from the stem loop regions and the Sm-binding site of U1snRNA efficiently induced IFN-α and IL-6 in Flt3L-cultured DCs in a Tlr7-dependent manner. The U1snRNA component of U1snRNP immune complexes, found in patients with SLE, acts as an endogenous “self” ligand for Tlr7 and triggers IFN-α and IL-6 production in PDCs.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3