Shielding the front-strand β3 of the von Willebrand factor A1 domain inhibits its binding to platelet glycoprotein Ibα

Author:

Bonnefoy Arnaud1,Yamamoto Hiroshi1,Thys Chantal1,Kito Morikazu1,Vermylen Jos1,Hoylaerts Marc F.1

Affiliation:

1. From the Center for Molecular and Vascular Biology, K.U. Leuven, Leuven, Belgium; and Ajinomoto Co, Inc, Kawasaki, Japan.

Abstract

Platelet adhesion to damaged vessel wall and shear-induced platelet aggregation necessitate binding of the von Willebrand factor (VWF) A1 domain to platelet GPIbα. Blocking this interaction represents a promising approach to the treatment of arterial thrombosis. Comparison of amino acid sequences of the VWF A1 domain in several species, expressing VWF recognized by the blocking monoclonal antibody AJvW-2, suggested 9 residues (His563, Ile566, Asp570, Ala581, Val584, Ala587, Arg616, Ala618, and Met622) to contribute to the epitope for AJvW-2 or to be part of the GPIbα-binding site. Glutathione-S-transferase (GST)–human VWF A1 fusion proteins, in which these amino acids were mutated to their murine counterparts, were tested for their capacity to bind AJvW-2 or heparin, to interfere with botrocetin- or ristocetin-mediated VWF binding to GPIb, or to induce flow-dependent platelet tethering in a perfusion chamber. Thus, mutations His563Arg, Ile566Leu, Asp570Ala, and Ala587Thr, clustered on the outer surface of the A1 domain, dramatically impaired binding of AJvW-2 to A1. The His563Arg, Ile566Leu, and Asp570Ala mutations also impaired the binding of heparin, which competes with AJvW-2 for binding to A1. Perfusion studies revealed that His563, Ile566, Asp570, Arg616, and Ala618 take part in GPIbα binding, their mutation-impairing platelet recruitment. In agreement with the surface distribution of VWF type 2M mutations, this study demonstrates overlapping of the epitope for AJvW-2 and the GPIbα-binding site, located around the front pocket of the A1 domain and defined by strands β3, β4, and helix α3, and it provides a mechanistic basis for VWF neutralization by this antibody.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3