Affiliation:
1. University Children's Hospital, Department of General Pediatrics, Hematology and Oncology, Tübingen, Germany; and
2. University Hospital of Modena and Reggio Emilia, Department of Oncology, Hematology and Respiratory Diseases, Modena, Italy
Abstract
Abstract
Human multipotent mesenchymal stromal cells (MSCs) suppress proliferation and alloreactivity of T cells. Several signaling molecules and enzymes contribute to this effect. We focused on carbohydrate-protein interactions and investigated whether lectins are involved in immune modulation by MSC. Gene expression profiling of MSCs revealed that one of the most important lectins in this setting, galectin-1, was highly expressed. Galectin-1 protein was detected intracellularly and on the cell surface of MSCs. In addition, galectin-1 was released into the cell culture supernatant by MSCs. To analyze the functional role of galectin-1, a stable knockdown of galectin-1 in MSCs with use of a retroviral transfection system was established. Galectin-1 knockdown in MSCs resulted in a significant loss of their immunomodulatory properties, compared with MSCs infected with nontargeting control sequences. The galectin-1 knockdown partially restored the proliferation of CD4+ and CD8+ T cells. By contrast, the effect of MSCs on nonalloreactive natural killer (NK) cells was unaffected by down-regulation of galectin-1 expression. Furthermore, MSC-derived galectin-1 significantly modulated the release of cytokines involved in graft-versus-host disease (GVHD) and autoimmunity (eg, tumor necrosis factor-α [TNFα], IFNγ, interleukin-2 [IL-2], and IL-10. These results identify galectin-1 as the first lectin mediating the immunomodulatory effect of MSCs on allogeneic T cells.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
236 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献