Antiendothelial cell antibodies mediate enhanced leukocyte adhesion to cytokine-activated endothelial cells through a novel mechanism requiring cooperation between FcγRIIa and CXCR1/2

Author:

Florey Oliver J.1,Johns Michael1,Esho Olubukola O.1,Mason Justin C.1,Haskard Dorian O.1

Affiliation:

1. British Heart Foundation (BHF) Cardiovascular Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, United Kingdom

Abstract

Abstract Antiendothelial cell antibodies (AECAs) are commonly detectable in diseases associated with vascular injury, including systemic lupus erythematosus (SLE), systemic sclerosis, Takayasu arteritis, Wegener granulomatosis, Behçet syndrome, and transplant arteriosclerosis. Here, we explore the hypothesis that these antibodies might augment polymorphonuclear leukocyte (PMN) adhesion to endothelium in inflammation. Initially, we established that a mouse IgG mAb bound to endothelial cells (ECs) significantly increased PMN adhesion to cytokine-stimulated endothelium in an FcγRIIa-dependent manner. Neutralizing antibodies, and adenoviral transduction of resting ECs, demonstrated that the combination of E-selectin, CXCR1/2, and β2 integrins is both necessary and sufficient for this process. We observed an identical mechanism using AECA IgG isolated directly from patients with SLE. Assembled immune complexes also enhanced PMN adhesion to endothelium, but, in contrast to adhesion because of AECAs, this process did not require CXCR1/2, was not inhibited by pertussis toxin, and was FcγRIIIb rather than FcγRIIa dependent. These data are the first to demonstrate separate nonredundant FcγRIIa and FcγRIIIb-mediated mechanisms by which EC-bound monomeric IgG and assembled immune complexes amplify leukocyte adhesion under dynamic conditions. Furthermore, the observation that FcγRIIa and CXCR1/2 cooperate to enhance PMN recruitment in the presence of AECAs suggests a mechanism whereby AECAs may augment tissue injury during inflammatory responses.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3