Regulatory network control of blood stem cells

Author:

Göttgens Berthold1ORCID

Affiliation:

1. Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom

Abstract

Abstract Hematopoietic stem cells (HSCs) are characterized by their ability to execute a wide range of cell fate choices, including self-renewal, quiescence, and differentiation into the many different mature blood lineages. Cell fate decision making in HSCs, as indeed in other cell types, is driven by the interplay of external stimuli and intracellular regulatory programs. Given the pivotal nature of HSC decision making for both normal and aberrant hematopoiesis, substantial research efforts have been invested over the last few decades into deciphering some of the underlying mechanisms. Central to the intracellular decision making processes are transcription factor proteins and their interactions within gene regulatory networks. More than 50 transcription factors have been shown to affect the functionality of HSCs. However, much remains to be learned about the way in which individual factors are connected within wider regulatory networks, and how the topology of HSC regulatory networks might affect HSC function. Nevertheless, important progress has been made in recent years, and new emerging technologies suggest that the pace of progress is likely to accelerate. This review will introduce key concepts, provide an integrated view of selected recent studies, and conclude with an outlook on possible future directions for this field.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3