Human C/EBP-ϵ activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation

Author:

Bedi Richa1,Du Jian1,Sharma Arun K.2,Gomes Ignatius1,Ackerman Steven J.1

Affiliation:

1. Department of Biochemistry and Molecular Genetics, Section of Hematology-Oncology, College of Medicine, University of Illinois at Chicago; and

2. Department of Urology and The Institute of Bionanotechnology in Medicine (IBNAM), Feinberg School of Medicine, Northwestern University, Chicago, IL

Abstract

Abstract CCAAT enhancer-binding protein-epsilon (C/EBP-ϵ) is required for the terminal differentiation of neutrophils and eosinophils. Human C/EBP-ϵ is expressed as 4 isoforms (32, 30, 27, and 14 kDa) through differential RNA splicing, and alternative promoters and translational start sites. The C/EBP-ϵ32/30 isoforms are transcriptional activators, whereas C/EBP-ϵ27 interacts with and represses GATA-1 transactivation of eosinophil promoters. C/EBP-ϵ14 contains only DNA-binding and -dimerization domains and may function as a dominant-negative regulator. To define functional activities for these C/EBP-ϵ isoforms in myelopoiesis, human CD34+ progenitors were transduced with internal ribosomal entry site–enhanced green fluorescent protein retroviral vectors encoding the 32/30, 27, and 14-kDa isoforms, purified by fluorescence-activated cell sorter, and analyzed in colony-forming assays and suspension cultures. Progenitors transduced with C/EBP-ϵ32/30 default exclusively to eosinophil differentiation and gene expression, independent of interleukin-5, and regardless of inclusion of cytokines to induce other lineages. In contrast, the putative repressor C/EBP-ϵ27 isoform strongly inhibits eosinophil differentiation and gene expression, including GATA-1, promoting granulocyte (neutrophil)-macrophage differen-tiation. The C/EBP-ϵ14 repressor isoform strongly inhibits eosinophil development and gene expression, promoting erythroid differentiation, an effect enhanced by erythropoietin. Thus, C/EBP-ϵ isoforms can reprogram myeloid lineage commitment and differentiation consistent with their predicted activities based on activator and repressor domains and in vitro functional activities.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3