Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity

Author:

Cunha Cristina1,Di Ianni Mauro2,Bozza Silvia1,Giovannini Gloria1,Zagarella Silvia1,Zelante Teresa1,D'Angelo Carmen1,Pierini Antonio2,Pitzurra Lucia1,Falzetti Franca2,Carotti Alessandra2,Perruccio Katia2,Latgé Jean-Paul3,Rodrigues Fernando4,Velardi Andrea2,Aversa Franco2,Romani Luigina1,Carvalho Agostinho14

Affiliation:

1. Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy;

2. Division of Hematology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy;

3. Unité des Aspergillus, Institut Pasteur, Paris, France; and

4. Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal

Abstract

Abstract The C-type lectin receptor Dectin-1 plays a pivotal role in antifungal immunity. In this study, the recently characterized human DECTIN1 Y238X early stop codon polymorphism leading to diminished Dectin-1 receptor activity was studied in relation to invasive aspergillosis susceptibility and severity in patients receiving hematopoietic stem cell transplantation. We found that the presence of the DECTIN1 Y238X polymorphism in either donors or recipients of hematopoietic stem cell transplantation increased susceptibility to aspergillosis, with the risk being highest when the polymorphism was present simultaneously in both donors and recipients (adjusted hazard ratio = 3.9; P = .005). Functionally, the Y238X polymorphism impaired the production of interferon-γ and interleukin-10 (IL-10), in addition to IL-1β, IL-6, and IL-17A, by human peripheral mononuclear cells and Dectin-1 on human epithelial cells contributed to fungal recognition. Mechanistically, studies on preclinical models of infection in intact or bone marrow-transplanted Dectin-1 knockout mice revealed that protection from infection requires a distinct, yet complementary, role of both donor and recipient Dectin-1. This study discloses Dectin-1 deficiency as a novel susceptibility factor for aspergillosis in high-risk patients and identifies a previously unsuspected role for Dectin-1 in antifungal immunity that is the ability to control both resistance and tolerance to the fungus contingent on hematopoietic/nonhematopoietic compartmentalization.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3