Thrombopoietin responsiveness reflects the number of doublings undergone by megakaryocyte progenitors

Author:

Paulus Jean-Michel1,Debili Najet1,Larbret Frédéric1,Levin Jack1,Vainchenker William1

Affiliation:

1. From the Laboratory of Hematology, Hôpital du Sart Tilman, University of Liège, Liège, Belgium; the Institut National de la Santé et de la Recherche Médicale (INSERM) U362, Institut Gustave Roussy, Villejuif, France; and the Department of Laboratory Medicine, University of California School of Medicine, San Francisco.

Abstract

AbstractTo assess the variation of thrombopoietin (TPO) responsiveness associated with megakaryocyte (MK) progenitor amplification, TPO dose-response curves were obtained for normal human, single-cell plated CD34+CD41+ cells. The number of MKs per well was determined in situ and expressed as number of doublings (NbD). Dose-response curves of the mean frequency of clones of each size versus log TPO concentration showed highly significant differences in the TPO concentration needed for half-maximum generation of clones of different sizes (TPO50): 1.89 ± 0.51 pg/mL for 1 MK clones; 7.75 ± 0.81 pg/mL for 2 to 3 MK clones; 38.5 ± 5.04 pg/mL for 4 to 7 MK clones, and 91.8 ± 16.0 pg/mL for 8 to 15 MK clones. These results were consistent with a prediction of the generation-age model, because the number of previous doublings in vivo was inversely correlated with the number of residual doublings in vitro. TPO responsiveness decreased in vitro by a factor of 3.5 per doubling, reflecting the recruitment of progressively more ancestral progenitors. In support of this hypothesis, the more mature CD34+CD41+CD42+ cell fraction had a lower TPO50 (P < .001), underwent fewer NbD (P < .001), and expressed a 2.8-fold greater median Mpl receptor density (P < .001) than the CD34+CD41+CD42– fraction. Progenitors that have completed their proliferative program have maximum factor responsiveness and are preferentially induced to terminal differentiation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3