Intravascular survival of red cells coated with a mutated human anti-D antibody engineered to lack destructive activity

Author:

Armour Kathryn L.1,Parry-Jones David R.1,Beharry Nigel1,Ballinger James R.1,Mushens Rosey1,Williams R. Keith1,Beatty Cynthia1,Stanworth Simon1,Lloyd-Evans Paul1,Scott Marion1,Clark Michael R.1,Peters A. Michael1,Williamson Lorna M.1

Affiliation:

1. From the Departments of Pathology, Radiology, and Haematology, University of Cambridge; the Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge; National Blood Service, Bristol and Cambridge; and the National Blood Service Clinical Biotechnology Centre, Bristol, United Kingdom.

Abstract

Abstract Alloimmune feto-maternal destruction of blood cells is thought to be mediated by binding of alloantibodies to Fc receptors on effector cells. Blocking the antigen using inert antibodies might prolong cell survival. We have performed a “proof of principle” study in volunteers to measure the intravascular survival of autologous red cells coated with human recombinant IgG antibody containing a novel constant region, G1Δnab, devoid of in vitro cytotoxic activity. RhD-positive red blood cells (RBCs), labeled with chromium-51 or technetium-99m, were separately coated to equal levels with wild-type IgG1 or G1Δnab anti-D antibody (Fog-1). After re-injection, there was complete, irreversible clearance of IgG1-coated RBCs by 200 minutes, concomitant with appearance of radiolabel in plasma. Gamma camera imaging revealed accumulation in spleen and, at higher coating levels, in liver. In contrast, clearance of G1Δnab-coated cells was slower, incomplete, and transient, with whole blood counts falling to 7% to 38% injected dose by about 200 minutes before increasing to 12% to 67% thereafter. There was no appearance of plasma radiolabel and no hepatic accumulation. These findings suggest that G1Δnab-coated RBCs were not hemolysed but temporarily sequestered in the spleen and that our approach merits investigation in larger studies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3