A tissue-specific chromatin loop activates the erythroid ankyrin-1 promoter

Author:

Yocum Ashley O.1,Steiner Laurie A.2,Seidel Nancy E.1,Cline Amanda P.1,Rout Emily D.1,Lin Jolinta Y.1,Wong Clara2,Garrett Lisa J.3,Gallagher Patrick G.2,Bodine David M.1

Affiliation:

1. Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD;

2. Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, CT; and

3. Embryonic Stem Cell and Transgenic Mouse Core Facility, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD

Abstract

Abstract The human ankyrin-1 gene (ANK1) contains 3 tissue-specific alternative promoters. We have shown previously that the erythroid-specific ankyrin 1 (ANK1E) core promoter contains a 5′ DNase I hypersensitive site (HS) with barrier insulator function that prevents gene silencing in vitro and in vivo. Mutations in the ANK1E barrier region lead to decreased ANK1 mRNA levels and hereditary spherocytosis. In this report, we demonstrate a second ANK1E regulatory element located in an adjacent pair of DNase I HS located 5.6 kb 3′ of the ANK1E promoter at the 3′ boundary of an erythroid-specific DNase I–sensitive chromatin domain. The 3′ regulatory element exhibits enhancer activity in vitro and in transgenic mice, and it has the histone modifications associated with an enhancer element. One of the ANK1E 3′HS contains an NF-E2 binding site that is required for enhancer function. We show that a chromatin loop brings the 3′ enhancer and NF-E2 into proximity with the 5′ barrier region including the ANK1E core promoter. These observations demonstrate a model for the tissue-specific activation of alternative promoters that may be applicable to the ∼ 30% of mammalian genes with alternative promoters that exhibit distinct expression patterns.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3