Circulating endothelial cells, von Willebrand factor, interleukin-6, and prognosis in patients with acute coronary syndromes

Author:

Lee Kaeng W.1,Lip Gregory Y. H.1,Tayebjee Muzahir1,Foster William1,Blann Andrew D.1

Affiliation:

1. From the Haemostasis Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, United Kingdom.

Abstract

AbstractMarkers of inflammation (eg, interleukin-6 [IL-6]), and endothelial perturbation (von Willebrand factor [VWF], circulating endothelial cells [CECs]) are altered in acute coronary syndromes (ACS). We hypothesized that CECs and IL-6 levels during the first 48 hours of ACS would predict 30-day and 1-year major cardiovascular end points (MACE). A total of 156 patients with ACS were included. Blood was drawn on admission (baseline) and 48 hours later for plasma VWF, IL-6 (both enzyme-linked immunosorbent assay [ELISA]), and CECs (CD146 immunomagnetic separation). CEC phenotyping was performed by indirect immunoperoxidase staining. At 30 days, 48 patients had a MACE, a predicted by baseline and 48-hour CECs and IL-6 levels, 48-hour VWF levels, and by the “admission–48 hour change” (Δ) in CECs, VWF, and IL-6 (all P = .002). On multivariate analysis, 48-hour CECs (P < .001) were the strongest predictor of MACE, followed by ΔIL-6 (P = .01) and ΔVWF (P = .048); 48-hour CECs were the only predictor of death (P = .007). At 1 year, 65 patients had MACE, predicted by 48-hour CECs and ΔIL-6 levels (P < .001); age (P = .046) and 48-hour CECs (P < .001) were the only predictors of death. CECs stained 93% positive for endothelial nitric oxide synthase (eNOS) but were less than 1% positive for CD34, CD36, and CD45 and less than 3% for CD31. Like raised VWF, abnormal CECs and IL-6 levels during the first 48 hours of ACS were strongly associated with 30-day MACE. CECs at 48 hours were the only independent predictor of both death and MACE at 30 days and 1 year, indicating the crucial role of endothelial/vascular damage in ACS pathophysiology.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3