Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia

Author:

Baba Junko1,Watanabe Satoshi2,Saida Yu1,Tanaka Tomohiro1,Miyabayashi Takao1,Koshio Jun1,Ichikawa Kosuke1,Nozaki Koichiro1,Koya Toshiyuki1,Deguchi Katsuya3,Tan Chunrui4,Miura Satoru1,Tanaka Hiroshi1,Tanaka Junta2,Kagamu Hiroshi1,Yoshizawa Hirohisa2,Nakata Ko2,Narita Ichiei1

Affiliation:

1. Department of Medicine (II), Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan;

2. Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata City, Niigata, Japan;

3. Department of Surgery, Kyoto Kizugawa Hospital, Joyo-City, Kyoto, Japan; and

4. Division of Otolaryngology, Head and Neck Surgery, Duke University Medical Center, Durham, NC

Abstract

Abstract Cytotoxic lymphodepletion therapies augment antitumor immune responses. The generation and therapeutic efficacy of antitumor effector T cells (TEs) are enhanced during recovery from lymphopenia. Although the effects of lymphodepletion on naive T cells (TNs) and TEs have been studied extensively, the influence of lymphodepletion on suppressor cells remains poorly understood. In this study, we demonstrate a significant increase of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in sublethally irradiated lymphopenic mice. These radio-resistant Tregs inhibited the induction of TEs in tumor-draining lymph-nodes (TDLNs) during recovery from lymphopenia. The transfer of TNs into lymphopenic tumor-bearing mice resulted in some antitumor effects; however, Treg depletion after whole-body irradiation and reconstitution strongly inhibited tumor progression. Further analyses revealed that tumor-specific T cells were primed from the transferred TNs, whereas the Tregs originated from irradiated recipient cells. As in irradiated lymphopenic mice, a high percentage of Tregs was observed in cyclophosphamide-treated lymphopenic mice. The inhibition of Tregs in cyclophosphamide-treated mice significantly reduced tumor growth. These results indicate that the Tregs that survive cytotoxic therapies suppress antitumor immunity during recovery from lymphopenia and suggest that approaches to deplete radio and chemo-resistant Tregs can enhance cancer immunotherapies.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3