Anti-CD3 prevents factor VIII inhibitor development in hemophilia A mice by a regulatory CD4+CD25+-dependent mechanism and by shifting cytokine production to favor a Th1 response

Author:

Waters Braden1,Qadura Mohammad1,Burnett Erin1,Chegeni Rouzbeh1,Labelle Andrea1,Thompson Patrick1,Hough Christine1,Lillicrap David1

Affiliation:

1. Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON

Abstract

Abstract Non–Fc-receptor binding anti-CD3 Ab therapy, in the setting of several different autoimmune disorders, can induce antigen-specific and long-lasting immunologic tolerance. Because factor VIII (FVIII) inhibitor formation is the most serious treatment-related complication for hemophilia A patients, we tested the efficacy of anti-CD3 to prevent FVIII inhibitor formation in hemophilia A BALB/c and C57BL/6 mice. A short course of low-dose anti-CD3 significantly increased expression of CD25 and the proportion of CD4+CD25+ regulatory T cells in the spleen and potently prevented the production of inhibitory and non-neutralizing anti-FVIII antibodies in both strains of mouse. Depleting the CD4+CD25+ cells during anti-CD3 therapy completely ablated tolerance to FVIII. Further phenotypic characterization of regulatory cells in tolerant mice showed a consistently higher number of CD4+GITR+ and CD4+FoxP3+ cells in both strains of mice. In addition, in tolerant C57BL/6 mice we observed an increase in CD4+CD25+CTLA-4+ and CD4+CD25+mTGF-β1+ cells. Finally, in vitro cytokine profiling demonstrated that splenocytes from tolerant BALB/c and C57BL/6 were polarized toward a Th1-immune response. Taken together, these findings indicate that anti-CD3 induces tolerance to FVIII and that the mechanism(s) regulating this response almost certainly occurs through the generation of several distinct regulatory T-cell lineages and by influencing cytokine production and profile.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3